Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/122841
Título: | Evaluating the riparian forest quality index (QBR) in the Luchena River by integrating remote sensing, machine learning and GIS techniques | Autores/as: | Segura-Méndez, Francisco J. Pérez Sánchez, Julio Senent-Aparicio, Javier |
Clasificación UNESCO: | 3308 Ingeniería y tecnología del medio ambiente 2508 Hidrología |
Palabras clave: | Riparian quality QBR Remote sensing Vegetation index Machine learning |
Fecha de publicación: | 2023 | Publicación seriada: | Ecohydrology and Hydrobiology | Resumen: | The Water Framework Directive (WFD 2000/60/EU) is a mandatory standard that aims to improve and protect water quality in Europe. It covers, among other issues, the need to establish particular reference conditions for assessing river ecosystems and defines the ecological status of water bodies and conserve the hydromorphological characteristics of rivers. The quality of riparian vegetation is an important component of stream status and contributes directly to a river's ecological stability. QBR index (“Qualitat del Bosc de Ribera”) is one of the most widely used methods of evaluating riparian quality. This paper presents a new methodological version of the QBR index (QBR-GIS) to assess the ecological status of riparian forests. For this purpose, we have considered the four major conceptual blocks of the QBR index (total vegetation cover, cover structure, cover quality and channel alteration) using geographically referenced information, remote sensing and machine learning techniques. To obtain the cover quality indicator, several vegetation indices were calculated and a sensitivity analysis was performed. The QBR-GIS was validated from the results obtained from the QBR index. QBR-GIS provides greater reliability and objectivity in the results. Furthermore, it reduces the time spent on field visits and increases accuracy in obtaining the status of riparian quality. Furthermore, it is a useful tool for landscape planning and management, improved ability to apply the QBR Index to larger areas of the river catchment, resulting in more information on riparian quality. | URI: | http://hdl.handle.net/10553/122841 | ISSN: | 1642-3593 | DOI: | 10.1016/j.ecohyd.2023.04.002 | Fuente: | Ecohydrology and Hydrobiology [ISSN 1642-3593], (Abril 2023) |
Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 17-nov-2024
Visitas
36
actualizado el 03-feb-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.