Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/122841
Título: Evaluating the riparian forest quality index (QBR) in the Luchena River by integrating remote sensing, machine learning and GIS techniques
Autores/as: Segura-Méndez, Francisco J.
Pérez Sánchez, Julio 
Senent-Aparicio, Javier
Clasificación UNESCO: 3308 Ingeniería y tecnología del medio ambiente
2508 Hidrología
Palabras clave: Riparian quality
QBR
Remote sensing
Vegetation index
Machine learning
Fecha de publicación: 2023
Publicación seriada: Ecohydrology and Hydrobiology 
Resumen: The Water Framework Directive (WFD 2000/60/EU) is a mandatory standard that aims to improve and protect water quality in Europe. It covers, among other issues, the need to establish particular reference conditions for assessing river ecosystems and defines the ecological status of water bodies and conserve the hydromorphological characteristics of rivers. The quality of riparian vegetation is an important component of stream status and contributes directly to a river's ecological stability. QBR index (“Qualitat del Bosc de Ribera”) is one of the most widely used methods of evaluating riparian quality. This paper presents a new methodological version of the QBR index (QBR-GIS) to assess the ecological status of riparian forests. For this purpose, we have considered the four major conceptual blocks of the QBR index (total vegetation cover, cover structure, cover quality and channel alteration) using geographically referenced information, remote sensing and machine learning techniques. To obtain the cover quality indicator, several vegetation indices were calculated and a sensitivity analysis was performed. The QBR-GIS was validated from the results obtained from the QBR index. QBR-GIS provides greater reliability and objectivity in the results. Furthermore, it reduces the time spent on field visits and increases accuracy in obtaining the status of riparian quality. Furthermore, it is a useful tool for landscape planning and management, improved ability to apply the QBR Index to larger areas of the river catchment, resulting in more information on riparian quality.
URI: http://hdl.handle.net/10553/122841
ISSN: 1642-3593
DOI: 10.1016/j.ecohyd.2023.04.002
Fuente: Ecohydrology and Hydrobiology [ISSN 1642-3593], (Abril 2023)
Colección:Artículos
Vista completa

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 17-nov-2024

Visitas

36
actualizado el 03-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.