Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/122841
Campo DC Valoridioma
dc.contributor.authorSegura-Méndez, Francisco J.en_US
dc.contributor.authorPérez Sánchez, Julioen_US
dc.contributor.authorSenent-Aparicio, Javieren_US
dc.date.accessioned2023-05-19T07:52:26Z-
dc.date.available2023-05-19T07:52:26Z-
dc.date.issued2023en_US
dc.identifier.issn1642-3593en_US
dc.identifier.urihttp://hdl.handle.net/10553/122841-
dc.description.abstractThe Water Framework Directive (WFD 2000/60/EU) is a mandatory standard that aims to improve and protect water quality in Europe. It covers, among other issues, the need to establish particular reference conditions for assessing river ecosystems and defines the ecological status of water bodies and conserve the hydromorphological characteristics of rivers. The quality of riparian vegetation is an important component of stream status and contributes directly to a river's ecological stability. QBR index (“Qualitat del Bosc de Ribera”) is one of the most widely used methods of evaluating riparian quality. This paper presents a new methodological version of the QBR index (QBR-GIS) to assess the ecological status of riparian forests. For this purpose, we have considered the four major conceptual blocks of the QBR index (total vegetation cover, cover structure, cover quality and channel alteration) using geographically referenced information, remote sensing and machine learning techniques. To obtain the cover quality indicator, several vegetation indices were calculated and a sensitivity analysis was performed. The QBR-GIS was validated from the results obtained from the QBR index. QBR-GIS provides greater reliability and objectivity in the results. Furthermore, it reduces the time spent on field visits and increases accuracy in obtaining the status of riparian quality. Furthermore, it is a useful tool for landscape planning and management, improved ability to apply the QBR Index to larger areas of the river catchment, resulting in more information on riparian quality.en_US
dc.languageengen_US
dc.relation.ispartofEcohydrology and Hydrobiologyen_US
dc.sourceEcohydrology and Hydrobiology [ISSN 1642-3593], (Abril 2023)en_US
dc.subject3308 Ingeniería y tecnología del medio ambienteen_US
dc.subject2508 Hidrologíaen_US
dc.subject.otherRiparian qualityen_US
dc.subject.otherQBRen_US
dc.subject.otherRemote sensingen_US
dc.subject.otherVegetation indexen_US
dc.subject.otherMachine learningen_US
dc.titleEvaluating the riparian forest quality index (QBR) in the Luchena River by integrating remote sensing, machine learning and GIS techniquesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ecohyd.2023.04.002en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,638
dc.description.jcr2,6
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,8
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.orcid0000-0002-2615-6076-
crisitem.author.fullNamePérez Sánchez, Julio-
Colección:Artículos
Vista resumida

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 17-nov-2024

Visitas

36
actualizado el 03-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.