Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/121614
Título: | Discrimination between smiling faces: Human observers vs. automated face analysis | Autores/as: | Del Líbano, Mario Calvo, Manuel G. Fernández Martín, Andrés Recio, Guillermo |
Clasificación UNESCO: | 610604 Análisis experimental de la conducta | Palabras clave: | Action units Emotion FACET Facial expression Smile |
Fecha de publicación: | 2018 | Publicación seriada: | Acta psychologica | Resumen: | This study investigated (a) how prototypical happy faces (with happy eyes and a smile) can be discriminated from blended expressions with a smile but non-happy eyes, depending on type and intensity of the eye expression; and (b) how smile discrimination differs for human perceivers versus automated face analysis, depending on affective valence and morphological facial features. Human observers categorized faces as happy or non-happy, or rated their valence. Automated analysis (FACET software) computed seven expressions (including joy/happiness) and 20 facial action units (AUs). Physical properties (low-level image statistics and visual saliency) of the face stimuli were controlled. Results revealed, first, that some blended expressions (especially, with angry eyes) had lower discrimination thresholds (i.e., they were identified as “non-happy” at lower non-happy eye intensities) than others (especially, with neutral eyes). Second, discrimination sensitivity was better for human perceivers than for automated FACET analysis. As an additional finding, affective valence predicted human discrimination performance, whereas morphological AUs predicted FACET discrimination. FACET can be a valid tool for categorizing prototypical expressions, but is currently more limited than human observers for discrimination of blended expressions. Configural processing facilitates detection of in/congruence(s) across regions, and thus detection of non-genuine smiling faces (due to non-happy eyes). | URI: | http://hdl.handle.net/10553/121614 | ISSN: | 0001-6918 | DOI: | 10.1016/j.actpsy.2018.04.019 | Fuente: | Acta psychologica [ISSN 0001-6918], v. 187, p. 19-29, (Junio 2018) |
Colección: | Artículos |
Citas SCOPUSTM
12
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
10
actualizado el 17-nov-2024
Visitas
19
actualizado el 14-oct-2023
Descargas
36
actualizado el 14-oct-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.