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A B S T R A C T

This study investigated (a) how prototypical happy faces (with happy eyes and a smile) can be discriminated
from blended expressions with a smile but non-happy eyes, depending on type and intensity of the eye ex-
pression; and (b) how smile discrimination differs for human perceivers versus automated face analysis, de-
pending on affective valence and morphological facial features. Human observers categorized faces as happy or
non-happy, or rated their valence. Automated analysis (FACET software) computed seven expressions (including
joy/happiness) and 20 facial action units (AUs). Physical properties (low-level image statistics and visual sal-
iency) of the face stimuli were controlled. Results revealed, first, that some blended expressions (especially, with
angry eyes) had lower discrimination thresholds (i.e., they were identified as “non-happy” at lower non-happy
eye intensities) than others (especially, with neutral eyes). Second, discrimination sensitivity was better for
human perceivers than for automated FACET analysis. As an additional finding, affective valence predicted
human discrimination performance, whereas morphological AUs predicted FACET discrimination. FACET can be
a valid tool for categorizing prototypical expressions, but is currently more limited than human observers for
discrimination of blended expressions. Configural processing facilitates detection of in/congruence(s) across
regions, and thus detection of non-genuine smiling faces (due to non-happy eyes).

1. Introduction

A smile (basically, lip corners turned up and pulled backwards,
frequently accompanied by exposed upper teeth) is often assumed to be
a diagnostic facial feature of happiness and to reflect positive feelings
and motives. Because people typically smile when they are happy,
observers generally infer that the smiler feels happy (and/or is probably
friendly). However, being happy does not necessarily lead someone to
smile, and a smile can be exhibited for reasons unrelated to happiness.
Actually, the smile is multifaceted and multifunctional in social inter-
action (Ambadar, Cohn, & Reed, 2009; Crivelli, Carrera, & Fernández-
Dols, 2015; Ekman, 2001; Niedenthal, Mermillod, Maringer, & Hess,
2010). In addition to reflecting positive feelings (enjoyment, warmth,
etc.), smiles can conceal or leak non-positive feelings, motives, or in-
tentions (mockery, contempt, arrogance, malicious joy or schaden-
freude, embarrassment, nervousness, etc.), or portray mere social po-
liteness devoid of affect. Further, a person can involuntarily experience
mixed emotions simultaneously, even involving opposite feelings of

pleasantness and unpleasantness (see Russell, 2017), which can pro-
duce a variety of blended facial expressions with a smile. Thus, it is
important to identify and differentiate the significance of such a variety
of smiles.

For an observer, to distinguish a smile conveying positive feelings,
motives, and intentions from a smile lacking them (or concealing non-
positive ones), contextual factors and prior knowledge of the expresser
can play an important role (Fernández-Dols & Crivelli, 2013; Hassin,
Aviezer, & Bentin, 2013). In addition, a morphological facial feature
called the Duchenne or D marker in the eye region can make a sig-
nificant contribution (see Gunnery & Ruben, 2016). This marker en-
gages contraction of the orbicularis oculi muscle, which lifts the cheek,
narrows the eye opening, and produces wrinkles around the eyes
(Frank, Ekman, & Friesen, 1993). Although such a marker can be
spontaneous or deliberate (Krumhuber & Manstead, 2009), its absence
or replacement with negatively valenced expressive changes (e.g.,
frown, etc.) would indicate that the smile does not reflect authentic
happiness. A recent meta-analysis (Gunnery & Ruben, 2016) has shown
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that Duchenne smiles and people producing them are rated more po-
sitively (i.e., authentic, real, attractive, trustworthy) than non-Duch-
enne smiles. Thus, observers can to some extent discriminate smiles
assumed to convey positive affect from other smiles by relying on the
eye region expression (see Ambadar et al., 2009; Gunnery & Hall, 2014;
Krumhuber, Likowski, & Weyers, 2014; McLellan, Johnston, Dalrymple-
Alford, & Porter, 2010; McLellan, Wilcke, Johnston, Watts, & Miles,
2012; Miles & Johnston, 2007; Quadflieg, Vermeulen, & Rossion, 2013;
Slessor et al., 2014).

However, discrimination is limited and sometimes smiling faces
with non-D eyes are seen as if they showed genuine happiness (see
Krumhuber et al., 2014; Okubo, Kobayashi, & Ishikawa, 2012;
Quadflieg et al., 2013). A central question is the influence of upper-face
action and intensity in modifying the perceived meaning of smiles. In
this context, to examine the role of the eye expression in discriminating
among different types of smiling faces, a series of studies have been
conducted in which the type of non-happy eye expression was varied. In
addition to explicit expression recognition, measures of affective
priming (Calvo, Fernández-Martín, & Nummenmaa, 2012), eye move-
ments (Calvo, Gutiérrez-García, Avero, & Lundqvist, 2013), event-re-
lated potentials (ERPs) of brain activity (Calvo, Marrero, & Beltrán,
2013), and perceptual thresholds (Gutiérrez-García & Calvo, 2015)
were collected, using blended expressions (i.e., a smiling mouth but
non-happy eyes—neutral, angry, fearful, etc.) as stimuli. For compar-
ison, prototypical happy faces (smiling mouth and Duchenne, happy
eyes) and prototypical non-happy faces (e.g., angry mouth and angry
eyes, etc.) were also presented. Across the various paradigms, difficul-
ties in identifying (as “non-happy”) blended expressions with a smile
increased in the presence of angry vs. disgusted vs. sad vs. fearful vs.
surprised or neutral eyes. That is, discrimination was better for smiling
faces with angry eyes (i.e., the least likely to be confused as happy) than
for those with disgusted eyes, which were discriminated better than
those with sad or fearful eyes, and discrimination was poorest for
smiling faces with surprised or neutral eyes.

The current study extended prior research with two major aims.
First, we investigated smile discrimination thresholds and gradients,
depending on type and intensity of the eye expression. We determined
threshold as the minimum expressive intensity of happiness in the eye
region that is required to recognize a smile as conveying positive feel-
ings, as well as the minimum intensity of non-happy eye expressions
(i.e., angry, etc.) that allows observers to identify a smiling face as not
truly happy. To this end, using Karolinska Directed Emotional Faces
(KDEF; Lundqvist, Flykt, & Öhman, 1998) as stimuli, (a) we varied the
degree of intensity (11 levels, from 0 to 100%, in 10% steps) of different
eye expressions (happy, angry, fearful, disgusted, sad, surprised, or
neutral) by means of a graphics morphing software (FantaMorph; Ab-
rosoft; see 2.2. Stimuli); and (b) we combined a smiling mouth with
different eye regions by means of the composite face technique (e.g.,
Quadflieg et al., 2013; Tanaka, Kaiser, Butler, & Le Grand, 2012). Thus,
we generated photographs of (a) prototypical happy expressions with a
smiling mouth and a happy eye expression, and (b) blended expressions
with the same smiling mouth, but an eye expression that varied in in-
tensity (from happy to non-happy).

The second aim addressed the comparison of human ‘subjective’
perception vs. automated ‘objective’ assessment of smile discrimination.
An important issue here is the relative role of affective valence (as
measured by subjective ratings) vs. physical features (as measured by
objective automated analysis) of facial expressions. To this end, from
human observers, we obtained (a) the probability that they categorized
faces as happy or not happy; and (b) the degree of affective valence
rating of each face, i.e., how positive or negative the expression con-
figuration looked like. In addition, by means of automated analysis with
Emotient FACET software (iMotions; see 2.5. Automated analysis of
facial expressions), we computed (a) the probability of each of the six
basic emotions (joy, anger, etc.) and neutrality for each face stimulus;
and (b) each of 20 morphological action units (AUs) at local regions.

Prior assessment of AUs by the Facial Action Coding System (FACS;
Ekman & Friesen, 1978; Ekman, Friesen, & Hager, 2002) has shown that
specific muscle movements characterize different emotional expres-
sions. Recent developments (e.g., FACET) have standardized the as-
sessment, allowing for a quantification of emotions and AUs as a
function of spatial parameter maps of facial features (see Bartlett &
Whitehill, 2011; Cohn & De la Torre, 2015).

In a related approach, Calvo, Gutiérrez-García, and Del Líbano
(2018) recently found that, for human observers, (a) the probability of
perceiving happiness in prototypical happy faces and also in blended
expressions with a smile increased mainly as a function of affective
valence of the facial configuration; and (b) the probability of (wrongly)
perceiving blended expressions as happy increased with delayed sal-
iency and reduced distinctiveness of the non-happy eye region, and
with enhanced AU6 (cheek raiser) and reduced AU4 (brow lowerer).
The current design makes three significant contributions. First, we have
directly compared human processing and automated modelling of
prototypical happy faces and blended expressions with a smile. Second,
by means of automated analysis, we have assessed 20 AUs, and also six
other expressions apart from happiness. Third, the eye expression in-
tensity has now been systematically varied to examine discrimination
thresholds, whereas previously only single (apex) happy or non-happy
eye expressions were presented.

For the current study, we conducted two experiments, with two
samples of 100 participants each and two different tasks, either hap-
piness categorization or affective valence ratings. In addition, we per-
formed computational modelling of facial expressions and AUs, as well
as assessment of physical properties of the face stimuli (low-level image
statistics and visual saliency). Nevertheless, for economy of exposition,
and to provide an integrated view of the different measures, all of them
will be presented together (in the Materials and methods, Results, and
Discussion sections), as parts of the same study.

2. Materials and methods

2.1. Participants

Two-hundred university undergraduates (124 female; 76 male; aged
18 to 30 years; M=21.1 years) from different courses (Psychology,
Medicine, Law, Economics, and Education) participated voluntarily or
for course credit, after providing informed consent. One-hundred of
them (62 female) were randomly assigned to a facial happiness judg-
ment task, and another 100 (62 female), to a valence rating task (see
2.4. Procedure). The study was approved by the University of La Laguna
Ethics Committee, and was conducted in accordance with the WMA
Declaration of Helsinki 2008.

2.2. Stimuli

For the different tasks (happiness judgment, valence rating, auto-
mated assessment, and computation of physical image properties), we
used color photographs from the KDEF set (Lundqvist et al., 1998). The
face stimuli portrayed 24 individuals (12 females: KDEF model numbers
01, 02, 07, 11, 14, 19, 20, 22, 26, 29, 31, 33; 12 males: 03, 05, 06, 10,
11, 12, 22, 23, 24, 25, 31, 35, each posing seven facial expressions
(neutral, happiness, anger, disgust, sadness, fear, and surprise). All 24
models were presented once in their original form as (a) prototypical
happy expressions showing Duchenne eyes and a smile, and as (b)
prototypical non-happy expressions (neutral, anger, etc.).

In addition, (c) based on the KDEF original stimuli, we constructed
six blended expressions with a smile but non-happy eyes, thus producing
144 new face stimuli, by means of the composite face technique (e.g.,
Tanaka et al., 2012). The upper half of each non-happy face and the
lower half of the happy face were combined, by cutting each face along
a horizontal line through the bridge of the nose and smoothing the
junction. The following blends were created for each of the 24 models:
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Neutral eyes+Happy smile (NeHa), Angry eyes+Happy smile
(AnHa), Disgusted eyes+Happy smile (DiHa), Sad eyes+Happy smile
(SaHa), Fearful eyes+Happy smile (FeHa), and Surprised
eyes+Happy smile (SuHa) (see Fig. 1).

Finally, (d) the expressive intensity of the non-happy eyes (e.g.,
angry) in the blended expressions was morphed by means of
FantaMorph© software (v.5.4.2; Abrosoft, Beijing, China). For each
expression of each poser, we created a sequence of 30 frames based on
two images: (1) a prototypical happy face (with happy eyes and a
smile), as the first frame, and (2) a blended expression with the eyes of
a prototypical non-happy face (angry, etc.), but the smile of the pro-
totypical happy face, as the final frame. We selected the first frame (i.e.,
the prototypical happy face, with 100% intensity of happy eyes; hence
0% intensity of non-happy eyes) and 10 additional frames that

represented, respectively, the 10, 20, 30, 40, 50, 60, 70, 80, 90, and
100% intensities of each non-happy eye expressions (neutral, anger,
disgust, sadness, fear, and surprise; see Fig. 1).

In sum, we used 1440 photographs (24 posers× 6 non-happy eye
expressions× 10 intensities) of blended expressions (a smiling mouth
with non-happy eyes), in addition to 24 photographs (24 posers) of
prototypical happy (both eye and mouth, 100% intensities) expressions,
and 144 photographs of prototypical non-happy (both eye and mouth,
100% intensities) expressions (24 posers× 6 non-happy—angry, sad,
fearful, disgusted, surprised, and neutral—faces).

2.3. Prototypical happy vs. non-happy smiling faces

To ensure that our prototypical happy face stimuli conveyed “truly”

Fig. 1. Sample stimuli. Examples of prototypical happy faces (happy eyes and a smile) and blended expressions (non-happy eyes and a smile) across 10% intensity
levels for each type of non-happy eyes. AnHa: angry eyes with a smile; FeHa: fearful eyes with a smile; DiHa: disgusted eyes with a smile; SaHa: sad eyes with a smile;
SuHa: surprised eyes with a smile; NeHa: neutral eyes with a smile. Top left corner (AnHa and FeHa, 10% intensity): Face areas (eyes, mouth, upper half, lower half,
whole face) on which low-level image statistics (i.e., luminance, etc.) and visual saliency were computed for all the stimuli.

M. Del Líbano et al. Acta Psychologica 187 (2018) 19–29

21



happy expressions, we used three criteria. First, we chose KDEF models
that included AU6 (i.e., cheek raiser, with the D-marker around the eye
region) in addition to AU12 (i.e., lip corner puller), as measured by
FACET (see 2.6. Automated analysis of facial expressions). Prototypical
happy faces showed AU12 to a greater extent than all the prototypical
non-happy faces, F(6, 161)= 143.65, p < 0.0001, ηp2= 0.84, and also
higher AU6 scores, F(6, 161)= 93.98, p < 0.0001, ηp2= 0.78 (see
Table 2 of Supplemental Analyses and Tables). Second, in a different
study (Calvo & Fernández-Martín, 2013), the face upper-half alone was
presented for 150ms, and participants responded whether the eye ex-
pression was happy or not. The eye region of the prototypical happy
faces was correctly identified as happy by 81% of participants. Third,
the prototypical happy faces have been found to produce affective
priming on the processing of pleasant scenes, whereas blended ex-
pressions with the same smiling mouth but non-happy eyes did not
produce affective priming (Calvo et al., 2012). Altogether, this allows
us to argue that our prototypical happy faces displayed “truly” happy
smiles.

2.4. Procedure

In the happiness categorization task and the affective valence task (100
different participants each), each observer was presented with 192
photographs as experimental stimuli: 24 prototypical happy faces (24
KDEF posers) and 144 blended expressions with a smile but non-happy
eyes, in addition to 24 prototypical non-happy faces (four KDEF posers
of each of the six non-happy expressions: 4 angry, 4 neutral, etc.) that
served as fillers. To avoid repetitions of the same poser and expression
at different intensities to the same participant, the stimuli were com-
bined into 10 different counterbalancings (with each one being as-
signed to 10 different participants). Thus, for blended expressions, each
participant was presented with each poser six times, albeit only once in
each of the six expressions, and each time at a different intensity level.
Each prototypical happy face was rated by all the participants. All six
categories of blended expressions were seen by all the participants, with
each poser being rated by 10 participants in each intensity condition of
each blended expression. The stimuli were presented in four blocks
(counterbalanced order) of 48 trials (in randomized sequence) each,
following 26 practice trials.

The stimuli were displayed on a computer screen using E-Prime 2.0
software (Schneider, Eschmann, & Zuccolotto, 2002). Participants were
informed that faces would be presented with different expressions
(otherwise unspecified). In the happiness categorization task, participants
indicated “whether a face looked happy or not happy”, by pressing a
“Yes” (L, in a computer keyboard) or “No” (D) key with their left or
right forefingers, as soon as possible. In the affective valence task, par-
ticipants rated “how emotionally negative or positive” the facial ex-
pression was, using the standard Self-Assessment Manikin on a 1–9
scale (Lang, Bradley, & Cuthbert, 2008), by pressing one out of 9 keys
on the upper row of the keyboard.

The sequence of events on each trial was similar for both tasks. After
an initial 500-ms central fixation cross on a screen, a face stimulus
appeared until the participant responded. The face subtended a visual
angle of 10.6° (height)× 8° (width) at a 70-cm viewing distance (this
approximates the size of a real face, i.e., 18.5× 13.8 cm, viewed from a
1-m distance). The selected response and reaction times were collected
for the happiness task, while only the selected response was used for the
valence task (as reaction times might be influenced by the different
location of the keys for the 1–9 scale).

2.5. Automated analysis of facial expressions

The face stimuli were subjected to automated expression analysis
(see Bartlett & Whitehill, 2011; Cohn & De la Torre, 2015; Girard, Cohn,
Jeni, Sayette, & De la Torre, 2015; Gordon, Tanaka, Pierce, & Bartlett,
2011; Olderbak, Hildebrandt, Pinkpank, Sommer, & Wilhelm, 2014) by

means of Emotient FACET SDK v6.1 (iMotions, A/S, Copenhagen,
Denmark), which provides two measures. First, so-called expression
evidence scores quantify the probability of each expression category to
be present in a given face image (as labeled in FACET: joy, anger,
surprise, fear, disgust, sadness, and contempt, in addition to neutral).
Second, action unit (AU) evidence scores quantify several AUs (AUs 1, 2,
4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 18, 20, 23, 24, 25, 26, 28, and 43),
according to the Facial Action Coding System (FACS; and Facial Action
Coding System Affect Interpretation Database, FACSAID; Ekman et al.,
2002; see also Cohn, Ambadar, & Ekman, 2007). AUs are anatomically
related to the movement of specific face muscles (e.g., AU12 involves
contraction of the zygomaticus major muscle, which draws the angle of
the mouth superiorly and posteriorly to allow for smiling). FACET
evidence scores are expressed in odds ratios in decimal logarithmic
scale, with positive values indicating that an expression or AU are
present; negative values, that they are not present; a zero score in-
dicates chance level (0.50/0.50).

FACET is assumed to classify face images as expressions by relying
on the detection of morphological cues. This assumption was supported
in the current study, as expressions were associated with specific AUs
(see 3.3.2. Discrimination of AUs). Early work showed that automated
facial expression analysis can discriminate dynamic facial configura-
tions differing in psychological meaning (e.g., spontaneous vs. delib-
erate smiles: Cohn & Schmidt, 2004; or spontaneous vs. posed brow
actions: Valstar, Pantic, Ambadar, & Cohn, 2006). This led us to use this
type of computational modelling to discriminate smiles in prototypical
vs. blended expressions.

2.6. Low-level image properties and visual saliency

As control measures, we assessed low-level image statistics and vi-
sual saliency of the face stimuli at each intensity level. This served to
examine whether discrimination thresholds (as a function of type and
intensity of the eye expression in smiling faces) would be confounded
with purely physical properties of the face images. First, with Matlab
7.0 (The Mathworks, Natick, MA), we computed luminance, root-mean-
square (RMS) contrast, skewness, kurtosis, energy, and signal-to-noise
(SNR) ratio. These measures were obtained from the whole face, the
upper and the lower face half, and also for the eye region—which was
particularly important, as this region (and hence also the upper face
half) varied for the different blended expressions and expressive in-
tensities—and the mouth region, separately (see Fig. 1). Second, with
the iLab Neuromorphic Vision C+ Toolkit (iNVT; http://ilab.usc.edu/
toolkit; Itti & Koch, 2000; Walther & Koch, 2006), we computed the
visual saliency of the eye and the mouth regions (see Fig. 1). This al-
gorithm calculates the visual conspicuity of an image area (pixel-by-
pixel) as a function of a combination of contrast, color, and spatial
orientation. Unlike the low-level image statistics, which are measured
for each region regardless of the rest of the face, visual salience re-
presents the relative weight of each region within the whole face. Visual
saliency has proved to influence shifts of covert and overt attention (see
Borji & Itti, 2013; Calvo & Nummenmaa, 2008; Underwood &
Foulsham, 2006).

3. Results

Given that automated facial expression assessment had to be com-
puted for each face stimulus, and that we wanted to compare human
observers and automated modelling, the face stimuli were the units of
statistical analysis. Type of eye expression (happy, angry, disgusted,
sad, fearful, surprised, and neutral) and expressive intensity (from 0%
to 100%, in 10% steps) of the non-happy eyes in the blended expres-
sions were repeated-measures factors. For all post hoc multiple com-
parisons, Bonferroni corrections (p < 0.05) were used. The raw data
are included in a Supplemental Dataset.
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3.1. Low-level image properties and visual saliency of the face stimuli

A 6 (Non-happy eye Expression: angry, disgusted, fearful, sad, sur-
prised, and neutral)× 11 (eye Intensity: 0% non-happy [i.e., 100%
happy], 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100% non-happy)
ANOVA was conducted on each low-level image property and the visual
saliency measures. This served to examine whether changes in such
properties as a function of intensity differed across the various blended
expressions with non-happy eyes relative to prototypical happy faces.
No significant interaction emerged for any measure or face area (all
Fs < 1; ps≥ 0.90, ns). This implies that changes in such physical
properties as a function of intensity were comparable for the different
non-happy eye expressions. Thus, potential differences in discrimina-
tion thresholds across expressions (see Section 3.2.) would not be due to
confounding physical stimulus factors.

3.2. Human observers' performance

To establish discrimination thresholds in the happiness categorization
task, we used two complementary criteria. A stringent criterion de-
termined the lowest expressive intensity level at which each blended
expression was judged as “non-happy”. A lenient criterion determined
the lowest intensity at which the probability of judging a blended ex-
pression as “happy” was significantly lower (i.e., less happy, which also
implies discrimination) than for the prototypical happy face. In addi-
tion, the asymptote, i.e., the intensity at which response latencies no
longer increased, and started to decline, were assumed to reflect fa-
cilitated discrimination of blended expressions as “non-happy”.
Relatedly, analyses of affective valence ratings determined the lowest
intensity at which the valence of each blended expression was lower
than for the prototypical happy faces.

3.2.1. Smile discrimination thresholds and asymptotic response latencies
A 6 (Non-happy eye Expression)× 11 (eye Intensity) ANOVA was

conducted on the probability of judging faces as happy. Main effects of

eye expression, F(5, 1518)= 586.68, p < 0.0001, ηp2= 0.66, and in-
tensity, F(10, 1518)= 1843, p < 0.0001, ηp2= 0.92, were qualified
by an interaction, F(50, 1518)= 19.93, p < 0.0001, ηp2= 0.40. To
decompose the interaction, one-way (Intensity) ANOVAs were per-
formed for each expression. The critical comparisons involved the
prototypical happy faces vs. each intensity level of the blended ex-
pression. As indicated in Fig. 2 (upper half), the discrimination
threshold was located at 20% intensity for AnHa (angry eyes) faces;
30%, for FeHa (fearful eyes), DiHa (disgusted eyes), and SaHa (sad
eyes) faces; 40%, for SuHa (surprised eyes) faces; and 50%, for NeHa
(neutral eyes) faces; all Fs(10, 253)≥ 146.80, p < 0.0001, ηp2≥ 0.85.
Thus, AnHa faces needed less intensity, and NeHa faces needed more
intensity, to be discriminated from prototypical happy expressions,
relative to the other blends.

The previous analysis revealed the threshold at which blended ex-
pressions were judged as “different” from (i.e., less happy than) the
prototypical happy expressions, but the rating probabilities (as
“happy”) were still high (~0.80 or above). To examine when each
blended expression was judged as “non-happy” (i.e., more non-happy
than happy), one-sample t-tests were conducted against the 0.5 prob-
ability. As indicated in Fig. 2 (lower half), AnHa faces were considered
as non-happy at 60% intensity (of the non-happy eyes) and above, t
(23)= 5.80, p < 0.0001, d=1.88; FeHa, t(23)= 2.30, p=0.03,
d=0.92, DiHa, t(23)= 3.68, p=0.001, d=1.51, and SaHa, t
(23)= 3.11, p=0.005, d=1.24, faces, at 70% intensity; and SuHa, t
(23)= 8.14, p < 0.0001, d=1.88, and NeHa, t(23)= 3.41,
p=0.002, d=1.39, faces, only at 100% intensity. Thus, comparable
patterns across expressions appeared for the “different” and the “non-
happy” discrimination thresholds.

A 6 (Expression)× 11 (Intensity) ANOVA on response latencies
yielded effects of eye expression, F(5, 1518)= 19.19, p < 0.0001,
ηp2= 0.06, intensity, F(10, 1518)= 230.05, p < 0.0001, ηp2= 0.60,
and an interaction, F(50, 1518)= 10.47, p < 0.0001, ηp2= 0.26.
Follow-up one-way (Intensity) ANOVAs were conducted for each ex-
pression, all Fs(10, 253)≥ 16.90, p < 0.0001, ηp2≥ 0.40. The

Fig. 2. Categorization of faces as happy.
Mean probability of human observers jud-
ging a face as “happy” for prototypical
happy expressions (happy eyes and a smile)
and blended expressions (non-happy eyes
and a smile) across 10% intensity levels for
each type of non-happy eyes. Dotted circles
(upper half of figure) indicate discrimina-
tion thresholds (i.e., lowest intensity at
which blended expressions were perceived
as less happy than prototypical happy faces).
Asterisks (lower half of figure) indicate the
thresholds at which blended expressions
were perceived as non-happy. For acronyms
(AnHa, etc.), see Fig. 1 caption.
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interaction revealed that the asymptote was reached at lower intensities
for some expressions than for others (see Fig. 3): AnHa faces, 50% in-
tensity; FeHa, DiHa, and SaHa faces, 70%; SuHa faces, 80%; and NeHa
faces, 90%. This indicates that discrimination was most demanding of
processing resources for NeHa faces, and most efficient for AnHa faces,
relative to the other blended expressions.

3.2.2. Affective valence thresholds
The 6 (Expression)× 11 (Intensity) ANOVA on affective valence

ratings showed effects of expression, F(5, 1518)= 503.60, p < 0.0001,
ηp2= 0.62, intensity, F(10, 1518)= 1734, p < 0.0001, ηp2= 0.92,
and an interaction, F(50, 1518)= 38.90, p < 0.0001, ηp2= 0.56. One-
way (Intensity) ANOVAs revealed the minimum intensity at which af-
fective valence of each blended expression was significantly lower than
for prototypical happy expressions (see Fig. 4): The threshold was

located at 20% intensity for AnHa (angry eyes) faces; 30% for DiHa
(disgusted eyes) and SaHa (sad eyes) faces; and 40% for FeHa (fearful
eyes), SuHa (surprised eyes), and NeHa (neutral eyes) faces; all Fs(10,
253)≥ 96.46, p < 0.0001, ηp2≥ 0.79. Thus, AnHa faces conveyed less
positive affect from lower intensities, relative to the other blended ex-
pressions.

In addition, a one-way (6: Blended expression) ANOVA was con-
ducted on the difference in affective valence scores between each
blended expression (at 100% intensity of non-happy eyes) and the
prototypical happy expression (i.e., blended minus happy). This served
to determine how much affective valence decreased as a function of
type of non-happy eyes. A main effect, F(5, 138)= 154.15,
p < 0.0001, ηp2= 0.85, and post hoc contrasts (all ps < 0.05) re-
vealed the greatest reduction in ratings of positive valence occurred for
AnHa faces (M difference=−5.09), followed by DiHa (−3.84) faces,

Fig. 3. Response latencies. Mean reaction
times of human observers judging face sti-
muli as “happy” or “non-happy” for proto-
typical happy expressions (happy eyes and a
smile) and blended expressions (non-happy
eyes and a smile) across 10% intensity le-
vels for each type of non-happy eyes. Dotted
circles indicate asymptotic levels.

Fig. 4. Affective valence ratings. Mean af-
fective valence ratings of human observers
for prototypical happy expressions (happy
eyes and a smile) and blended expressions
(non-happy eyes and a smile) across 10%
intensity levels for each type of non-happy
eyes. Dotted circles indicate discrimination
thresholds. Letters (a to d) indicate sig-
nificant differences among blended
expressions.>Greater reduction from pro-
totypical to blended expression (e.g., for a
[AnHa] vs. b [DiHa], etc.).
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followed by FeHa (−2.83), SaHa (−2.76), and NeHa (−2.66) faces
(which did not differ significantly from one another), and the smallest
reduction was for SuHa (−2.09) faces (see Fig. 4).

3.3. Automated facial expression assessment

The specific aim of this study regarding automated facial expression
assessment was concerned with discrimination between prototypical
happy expressions and blended expressions with a smile. Nevertheless,
a requisite was that automated assessment was sensitive to prototypical
expressions and the AUs associated with them according to the Facial
Action Coding System. To this end, we conducted specificity checks. The
results are presented as Supplemental Analyses and Tables: Essentially,
FACET software showed satisfactory classification of prototypical ex-
pressions and AUs.

Next, we report the analyses of results regarding automated ex-
pression coding and AUs for blended vs. happy expressions. Analyses
were conducted to determine, first, the minimum expressive intensity
(i.e., the threshold) at which the classification of a blended expression
as “joy” was significantly lower (thus implying discrimination) than for
the prototypical happy expression; and, second, the lowest intensity at
which each AU differed for blended relative to prototypical happy ex-
pressions.

3.3.1. Smile discrimination: joy evidence
A 6 (Expression)× 11 (Intensity) ANOVA was conducted on joy

evidence scores, as computed by FACET. Effects of eye expression, F(5,
1518)= 33.74, p < 0.0001, ηp2= 0.10, intensity, F(10,
1518)= 69.27, p < 0.0001, ηp2= 0.31, and an interaction, F(50,
1518)= 2.82, p < 0.0001, ηp2= 0.09, emerged. In follow-up one-way
(Intensity) ANOVAs, the critical comparisons involved the prototypical
happy faces vs. each blended expression. As indicated in Fig. 5, the
threshold was at 60% intensity for AnHa (angry eyes) and SuHa (sur-
prised eyes) faces; 70% for FeHa (fearful eyes) faces; 80% for DiHa
(disgusted eyes) and SaHa (sad eyes) faces; all Fs(10, 253)≥ 8.76,
p < 0.0001, ηp2≥ 0.26. AnHa and SuHa faces were thus discriminated
at lower intensities than the other blended expressions. In contrast,
NeHa (neutral eyes) faces were not discriminated from prototypical

happy faces at any intensity level.

3.3.2. Discrimination of AUs
One-way (11 non-happy eye Intensity) ANOVAs were conducted on

each AU scores. Out of the 20 AUs measured by FACET, 10 showed
statistically significant differences between the prototypical happy
faces and at least one or more blended expressions (see Table 1). Such
AUs—which were all FACS-relevant for the different emotions—were
retained for the subsequent analyses. Mean scores and intensity
thresholds for each AU are shown in Table 1. For example, AnHa faces
differed from prototypical happy faces on AU1 (at 70% intensity), AU2
(50% intensity), etc., and AU23 (60%), all Fs(10, 253)≥ 2.98,
p < 0.001, ηp2≥ 0.10. The other blended expressions, except NeHa
faces, also differed significantly on several AUs at various intensities, all
Fs(10, 253)≥ 3.90, p < 0.0001, ηp2≥ 0.13 (see details in Table 1).

3.4. Relationships between human and software performance

To examine the relationship between human and automated smile
discrimination, we conducted two analyses. First, we performed
Pearson correlations between the human observers' measures (i.e.,
probability of judging a face as happy, and affective valence ratings)
and the automated assessment measures (i.e., probability of classifying
a face as conveying joy, and the 10 selected AUs). As shown in Table 2,
the probability that human observers judged faces as happy was cor-
related with the automated joy evidence scores, r(1584)= 0.54,
p < 0.0001, 95% CI [0.50, 0.57]. Intra-class correlation (ICC 2, two-
way random) analyses revealed reliable classification consistency be-
tween evidence scores and human ratings of faces as happy or non-
happy, for each blended expression (N=264; AnHa: r=0.65,
p < 0.0001; FeHa: r=0.34, p < 0.0001; SaHa: r=0.37,
p < 0.0001; DiHa: r=0.40, p < 0.0001; SuHa: r=0.28, p=0.004;
except for NeHa faces: r=0.12, p=0.16, ns), and all the expressions as
a whole (N=1584; r=0.35 [0.16, 0.48], p < 0.0001).1 In addition,

Fig. 5. Automated assessment of happiness. Mean joy evidence scores from automated assessment for prototypical happy expressions (happy eyes and a smile) and
blended expressions (non-happy eyes and a smile) across 10% intensity levels for each type of non-happy eyes. Dotted circles indicate discrimination thresholds.

1 As indicated in our “Supplemental Analyses and Tables” file (see Evidence scores of
prototypical expressions: Specificity check), FACET clearly discriminated among seven
prototypical facial expressions (neutral, happy, surprised, sad, fearful, disgusted, and
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affective valence ratings were correlated with human recognition of
happiness, r(1584)= 0.91, p < 0.0001, CI [0.90, 0.92], and this oc-
curred to a greater extent (z=27.50, p < 0.0001) than with the au-
tomated joy evidence scores, r(1584)= 0.50, p < 0.0001, CI [0.46,
0.54]. In contrast, most of the AU measures correlated with joy evi-
dence scores more than with human happiness judgments (both the
probability of judging faces as happy and affective valence ratings; all
Fisher's zs > 7.00, p < 0.0001; see Table 2).

Second, multiple regression analyses were performed to estimate
the contribution of affective valence vs. morphological AUs to (a) human

judgments of a smiling face as happy, relative to (b) the automated
classification of a smiling face as joy. To this end, affective valence and
the 10 selected AU scores were stepwise entered as predictors in two
regression analyses. In one analysis, the probability of responding
“happy” by human observers was the dependent variable. The model that
produced the best regression fit, R2 adj. = 0.864, F(3,
1580)= 3347.94, p < 0.0001, combined three predictors accounting
for 75% of the variance in the dependent variable: The specific con-
tributions (according to the sr2 statistic) of (a) valence (49.56%; posi-
tive effect), (b) AU1 (3.53%; negative effect), and (c) AU9 (1.42%;
negative effect), were significant (all ps < 0.0001). In the other ana-
lysis, joy evidence scores obtained by automated assessment served as the
dependent variable. The model that produced the best regression fit, R2

adj. = 0.843, F(3, 1580)= 2824.36, p < 0.0001, combined three
predictors accounting for 71% of the dependent variable: The specific
contributions (sr2) of (a) AU12 (25.91%; positive effect), (b) AU2
(10.76%; negative effect), and (c) AU9 (5.52%; negative effect), were
significant (all ps < 0.0001).

Table 1
Morphological action units. Mean evidence scores of action units (AUs; in Odds Ratios) for prototypical happy faces (rows) and blended expressions (columns), as
computed by automated software analysis (Emotient FACET), and threshold levels of intensity (% of non-happy eyes) at which significant differences between happy
and blended expressions emerged.

Blended expression

Action units AnHa FeHa SaHa DiHa SuHa NeHa

AU1 Inner brow raiser 70% 60% 60% ns 50% ns
Happy: −1.16 >−1.69 < 0.08 <−0.16 < 0.08

AU2 Outer brow raiser 50% 90% ns 60% 50% ns
Happy: −0.75 >−1.25 < 0.18 >−1.22 < 0.22

AU4 Brow lowerer 50% 50% 50% 50% ns ns
Happy: −1.70 <−0.72 <−0.97 <−0.91 <−0.96

AU5 Upper lid raiser 70% 60% ns ns 50% ns
Happy: −1.36 <−0.75 <−0.57 <−0.51

AU6 Cheek raiser ns 70% ns ns 50% ns
Happy: 3.12 > 2.49 > 2.44

AU7 Lid tightener 90% ns ns 70% 40% ns
Happy: 0.46 < 1.05 < 1.02 > 0.05

AU9 Nose wrinkler 50% ns ns 50% 70% ns
Happy: −2.57 <−1.23 <−1.33 >−3.75

AU12 Lip corner puller 60% 70% 80% 80% 70% ns
Happy: 4.29 > 3.62 > 3.57 > 3.62 > 3.72 > 3.61

AU14 Dimpler 100% 60% 80% ns 50% ns
Happy: −1.93 <−1.46 <−1.61 <−1.45 <−1.50

AU23 Lip tightener 60% ns ns ns ns ns
Happy: −1.72 <−1.27

Note. > or < Significantly higher or lower, respectively, AU scores for Happy than for Blended expressions (e.g., AU1 was significantly higher for prototypical
happy faces than for AnHa faces at 70% intensity and above, etc.). ns: non-significant differences. Bold for threshold level of intensity.

Table 2
Relationships between measures. Pearson correlations (N=1584 face stimuli) between (a) the probability of judging faces as happy (R “Happy”), (b) affective
valence ratings (both a and b, Human Observers), (c) automated classification of faces as joy, and (d) action unit scores (both c and d, Emotient FACET Software).

1 R “Happy” (Observers) 1 vs. 2 2 Joy evidence (Software) 2 vs. 3 3 Valence (Observers)

Response “Happy –
Joy Evidence 0.54*** –
Affective Valence 0.91*** 0.0001 0.50*** –

AU1 Inner brow raiser −0.19* 0.0001 −0.57*** 0.0001 −0.05
AU2 Outer brow raiser 0.03 0.0001 −0.46*** 0.0001 0.12
AU4 Brow lowerer −0.69*** −0.62*** −0.63***
AU5 Upper lid raiser −0.37** 0.0001 −0.65*** 0.0001 −0.32**
AU6 Cheek raiser 0.17* 0.0001 0.72*** 0.0001 0.14
AU7 Lid tightener −0.16* 0.0001 0.03 0.0001 −0.22*
AU9 Nose wrinkler −0.34** 0.0001 −0.05 0.0001 −0.38**
AU12 Lip corner puller 0.48*** 0.0001 0.86*** 0.0001 0.48***
AU14 Dimpler −0.26* 0.0001 −0.53*** 0.0001 −0.23*
AU23 Lip tightener −0.22* 0.0001 −0.45*** 0.0001 −0.29*

Note. 1 vs. 2 and 2 vs. 3 indicate significant differences (using the Fisher r-to-z transformation) between two correlation coefficients (1 vs. 2: R “Happy” column vs.
Joy Evidence column; 2 vs. 3: Joy Evidence column vs. Valence column). For each single correlation, *p < 0.01; **p < 0.001; ***p < 0.0001.

(footnote continued)
angry), with significant effects (all ps < 0.0001). Further, for such expressions, the
correlation between human observers' and FACET categorization performance was r
(168)= 0.61, p < 0.0001, N=168 (24 KDEF models by 7 expressions). This reveals
FACET sensitivity and convergence with human observers. In contrast, for blended ex-
pressions, we observed lower sensitivities and correlations between FACET and human
observers. This may not be surprising, however, because—apart from being ambi-
guous—many blended expressions included low expressive eye intensities, thus in-
creasing discrimination difficulties.
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4. Discussion

This study investigated (a) discrimination thresholds for smiles in
prototypical happy faces (with happy eyes) vs. smiles in blended ex-
pressions (with non-happy eyes); and (b) smile discrimination sensi-
tivity differences between human perceivers and automated assessment
with FACET computer software. Results revealed that (a) smile dis-
crimination was interactively affected by intensity and type of eye ex-
pression, with some blends having lower discrimination thresholds than
others; and (b) discrimination was better for human perceivers than for
FACET assessment, with the former relying on affective valence, and
the latter relying on morphological facial features.

4.1. Discrimination thresholds as a function of type of eye expression in
human observers

Prior research has compared faces with a smiling mouth and happy-
looking (Duchenne) eyes relative to smiling faces with neutral eyes, and
has shown that observers can to some extent differentiate between the
two types of smiles (Krumhuber et al., 2014; Okubo et al., 2012;
Quadflieg et al., 2013; for a review, see Gunnery & Ruben, 2016). In the
current study, this approach was extended by means of varying the
intensity and type of eye expression, from happiness to neutrality or to
each of five basic emotions (anger, sadness, disgust, fear, and surprise).
For human observers, smiling faces with angry eyes (AnHa) were dis-
criminated from prototypical happy faces at lower intensities than those
with sad (SaHa), fearful (FeHa), or disgusted (DiHa) eyes, which were
discriminated at lower intensities than those with surprised eyes (SuHa),
which were discriminated at lower intensities than those with neutral
eyes (NeHa). The reaction time asymptotes were in correspondence
with this discrimination threshold pattern.

These findings complement those of prior research in which the
non-happy eye intensity of smiling faces was held always at the apex:
With different paradigms, (a) the probability of confusing such blended
expressions as “happy” (Calvo et al., 2012; Calvo, Gutiérrez-García,
et al., 2013), (b) the positive affective priming (Calvo et al., 2012), and
(c) the minimum face display time required for discrimination
(Gutiérrez-García & Calvo, 2015), were directly related to the current
study thresholds, while (d) the probability of first fixation on the eye
region (Calvo, Gutiérrez-García, et al., 2013), and (e) the amplitude of
emotional expression processing ERP components (P200 and EPN; Calvo,
Marrero, & Beltrán, 2013), were inversely related. That is, consistently,
expressions with the (current) lowest threshold (AnHa) had less (a), (b)
and (c), but more (d) and (e), whereas the opposite occurred for ex-
pressions with the highest threshold (NeHa), with the other blended
expressions in between.

This reliable pattern across various paradigms and measures raises
the issue of which factors facilitate or impair smile discrimination de-
pending on the eye expression. In the current study, affective valence
was the best predictor of the probability that human observers judged
faces as happy. Discrimination threshold differences across types and
intensities of blended expressions varied as a function of the affect they
conveyed (with increasing discrimination difficulties as positive affect
increased, and vice versa). This suggests that affective processing sig-
nificantly contributes to discriminate between types of smiling faces
(Calvo et al., 2018).2 Such discrimination differences are not due to
mere physical factors, as (a) the role of affective valence as a predictor
remained significant when morphological facial features (AUs) were
controlled in the multiple regression analyses; and (b) there was no
interaction between type of eye expression and intensity for any of
multiple low-level (e.g., luminance, etc.) and visual saliency properties

of the face stimuli. At a more general level, the current findings fit into
the broader literature regarding facial emotion perception and how the
brain processes emotion. Evidence from two different approaches, i.e.,
affective priming paradigms (e.g., Lipp, Price, & Tellegen, 2009;
McLellan et al., 2010) and emotional ERP components of brain activity
(e.g., Calvo & Beltrán, 2013; Willis, Palermo, Burke, Atkinson, &
McArthur, 2010), suggests that affective valence is extracted from facial
expressions—including smiling faces—early and automatically (for a
review, see Calvo & Nummenmaa, 2016). Our own findings converge in
showing that affective processing is important for fine discrimination
between types of smiling faces.

4.2. Human versus software discrimination of smiles: processing
mechanisms

Automated analysis of prototypical (happy or non-happy) expres-
sions with FACET software showed satisfactory classification and dis-
crimination specificity (see Supplemental Analyses and Tables). The
evidence scores of each expression was significantly greater for the
corresponding stimulus category than for others (e.g., a sad face sti-
mulus was more likely to be classified as “sad” than as any other ex-
pression, etc.). In addition, AUs characterized expressive categories in
accordance with FACS proposals (Ekman et al., 2002). Further, for
blended expressions, the automated assessment of joy was sensitive to
eye expression intensity, and revealed an interaction with type of eye
expression, just as it was the case for human observers. All this and the
significant correlation between automated analysis and observer pro-
cessing of joy/happiness demonstrate acceptable expression recognition
performance using computer software (Bartlett & Whitehill, 2011; Cohn
& De la Torre, 2015; Dailey, Cottrell, Padgett, & Adolphs, 2002;
Olderbak et al., 2014; Susskind, Littlewort, Bartlett, Movellan, &
Anderson, 2007).

Nevertheless, for blended expressions, human perceivers differ-
entiated between types of smiles better than computer software did.
The relationships between non-happy eye intensity and the joy evi-
dence scores obtained by automated assessment, albeit significant, were
lower than those for human observers. Also, relative to human
achievement, FACET assessment yielded higher discrimination thresh-
olds (hence poorer performance). Further, FACET classified most of the
blended expressions as “less happy” than the prototypical happy ex-
pressions (except for smiling faces with neutral eyes) at some intensity
level, but blends were never categorized as “not happy”. This suggests
that activation of the distinctive AU12 (lip corner puller) characterizing
the smiling mouth biases the FACET categorization of expressions as
joy. In fact, in the regression analyses, AU12 was the best predictor of
FACET joy evidence scores (accounting for 25.91% of the variance),
whereas AU6 (cheek raiser)—albeit correlated with joy scores in the
bivariate analyses—did not emerge as a significant predictor.
Importantly, AU6 (eye region) is different for each type of smiling face,
and therefore it should facilitate discrimination. In contrast, AU12
(mouth region) is common to both types of smiles, and therefore it
would hinder discrimination. The highly significant role of AU12
(which probably overshadowed that of AU6) could thus explain the
limited automated discrimination performance.3

What are the differences in the discrimination mechanisms between
human and automated assessment of smiles? The correlation and

2 Future research could also examine whether cue-congruency (not just valence) be-
tween the upper and the lower face half might better explain discrimination threshold
differences as a function of type and intensity of eye expression.

3 AU12 is the hallmark of a smile and is typically located in the lower half of a face.
However, AU12 evidence scores varied with manipulations in the upper face half (see
Table 1), despite the lower face half having been held constant across all the expressions
with a smile. In fact, the low-level image properties (i.e., luminance, etc.) of the lower
half of all the smiling faces were practically identical (all ps≥ 0.98). This implies that the
modifications in the upper face region (different types and intensities of eye expressions)
were used in some manner by the FACET “black box” algorithm to adjust the calculation
for AU12 evidence. Further, this suggests that, although FACET computations probably
rely mainly on local morphological features for each AU, some kind of configural pro-
cessing of the face as a whole is made.
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multiple regression analyses suggest that human processing is more
dependent on affective valence of the face as a whole, whereas auto-
mated processing is more dependent on single facial features. This ana-
lytic coding can also be inferred from the strong—and probably bia-
sing—contribution of AU12. Automated feature analysis would
facilitate the classification of prototypical happy faces (with a smile and
happy eyes) because the distinctive smile would gain prominence in the
computation process; but it would compromise the correct rejection of
blended expressions (a smile but non-happy eyes) as “not happy” be-
cause of the reduced weight of the eyes (in favor of the smiling mouth).
In contrast, human observers, albeit relying also on single features (in
fact, among the various AUs, AU12 showed the highest correlation with
happiness judgments), depend on holistic processing to obtain an af-
fective impression from the face (Calvo et al., 2012; Tanaka et al.,
2012). Holistic or configural integration would allow for a better de-
tection of inconsistencies between the (non-happy) eyes and the
(smiling) mouth, thus facilitating the refined discriminations (including
affective processing) required for blended expressions.

4.3. Limitations and extensions

An alternative explanation of the human observers' discrimination
advantage over FACET for blended vs. prototypical happy expression
can be considered. The majority of the face stimuli (i.e., blended and
prototypical happy faces) involved the same smiling mouth (although
also prototypical non-happy faces without a smile in the lower face half
were presented), while they had a variety of eye expressions. This gave
observers ample opportunity to learn that the upper face was especially
task-relevant whereas the lower face had less discriminative value. As a
consequence, observers might have adopted an attentional strategy
involving preferential attention towards the upper face, thus facilitating
discrimination. In contrast, FACET presumably does not focus on par-
ticular facial areas, but rather considers all of them for categorization.
Eye-tracking assessment could be useful to examine this explanation in
human observers, and FACET could be ideally trained to adopt “at-
tentional strategies” depending on type and intensity of expressive
changes. As another extension, it would be interesting to know if FACET
might perform better with regards to discriminating blended expres-
sions when AU12 is presented at a lower intensity. This would be useful
to test our hypothesis of an overrepresentation of the smile in the
FACET computations. Relatedly, further refinement of FACET algo-
rithms could re-adjust the weights assigned to different facial features
of happy faces, or to enhance the configural integration of the mouth
with the eyes, and to train the system with blended expressions.

Beyond basic emotions, a person can feel mixed emotions (Heavey,
Lefforge, Lapping-Carr, & Hurlburt, 2017; Russell, 2017; Watson &
Stanton, 2017), and brain systems can in fact support simultaneous and
mixed affective processing and experience (Man, Nohlen, Melo, &
Cunningham, 2017). Further, some blended emotions combine happi-
ness with negative emotions (e.g., schadenfreude, nostalgia, enjoying
being frightened—e.g., by a horror film or a roller-coaster—etc.), which
may give way to very different types of smiles. In addition, social norms
often constrain the magnitude of emotional exhibition and, therefore,
expressive changes in the face may be subtle, which adds difficulty to
the interpretation of the underlying emotions. The issue of emotion
blends and expression subtlety is important regarding smile dis-
crimination, given the multifaceted and multifunctional nature of
smiles (Crivelli et al., 2015; Niedenthal et al., 2010). In the current
study, we addressed this issue by varying the type and intensity of the
eye region expression in faces with a smile. The scope could be ex-
tended by varying also the shape and intensity of the smiling mouth
itself, to encompass a greater diversity of mixed emotions and expres-
sions.

Finally, there is the issue of what the comparison of automated and
human discrimination performance adds to our knowledge of facial
emotion processing. Computational models of facial expression

processing, such as FACET and others (e.g., EMPATH: Dailey et al.,
2002; SVM: Susskind et al., 2007; or CERT: Littlewort et al., 2011)
classify facial expressions as certain emotions based on specific per-
ceptual features and configurations (see Bartlett & Whitehill, 2011;
Cottrell & Hsiao, 2011). Accordingly, we can argue that facial expres-
sions can be coded by “emotionless machines”, in the absence of af-
fective processing. Yet we found a significant correlation between au-
tomated classification and subjective affective valence (r=0.50; and
also between automated and human categorization performance:
r=0.54). This suggests that human observers also rely greatly on
perceptual processing of morphological features. It is true, however,
that the correlation between human discrimination performance and
affective ratings was significantly higher (r=0.91), which reveals an
additional significant role of emotional processing, beyond—even if
based on—perceptual processing.

5. Conclusions

Smiles in blended expressions with non-happy eyes can be dis-
criminated by human observers as not conveying happiness, although
this greatly depends on type and intensity of expression in the eye re-
gion. The discrimination threshold is lowest (i.e., easier discrimination,
at lower intensities) for angry eyes, and it is highest (i.e., more difficult)
for neutral eyes, with fearful, sad, disgusted, and surprised eyes in be-
tween. Discrimination of blended expressions is more accurate for
human perceivers than for automated assessment using FACET soft-
ware, which, however, showed significant accuracy and specificity in
classifying prototypical expressions. Human performance is highly re-
lated to perception of affective valence, whereas automated perfor-
mance is highly related to morphological action units (AUs). This sug-
gests that the former relies more on configural face processing, whereas
the latter relies more on analytical feature processing.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.actpsy.2018.04.019.
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