Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/121432
Título: | Attention-based Skin Cancer Classification Through Hyperspectral Imaging | Autores/as: | La Salvia, Marco Torti, Emanuele Gazzoni, Marco Marenzi, Elisa León Martín, Sonia Raquel Ortega Sarmiento,Samuel Fabelo Gómez, Himar Antonio Marrero Callicó, Gustavo Iván Leporati, Francesco |
Clasificación UNESCO: | Investigación | Palabras clave: | Deep learning Medical hyperspectral imaging Skin cancer Vision Transformers |
Fecha de publicación: | 2022 | Editor/a: | Institute of Electrical and Electronics Engineers Inc. | Conferencia: | 25th Euromicro Conference on Digital System Design (DSD 2022) | Resumen: | In recent years, hyperspectral imaging has been employed in several medical applications, targeting automatic diagnosis of different diseases. These images showed good performance in identifying different types of cancers. Among the methods used for classification, machine learning and deep learning techniques emerged as the most suitable algorithms to handle these data. In this paper, we propose a novel hyperspectral image classification architecture exploiting Vision Transformers. We validated the method on a real hyperspectral dataset containing 76 skin cancer images. Obtained results clearly highlight that the Vision Transforms are a suitable architecture for this task. Measured results outperform the state-of-the-art both in terms of false negative rates and of processing times. Finally, the attention mechanism is evaluated for the first time on medical hyperspectral images. | URI: | http://hdl.handle.net/10553/121432 | ISBN: | 9781665474047 | DOI: | 10.1109/DSD57027.2022.00122 | Fuente: | Proceedings - 2022 25th Euromicro Conference on Digital System Design, DSD 2022 / Himar Fabelo, Samuel Ortega, Amund Skavhaug (Eds.), p. 871-876 |
Colección: | Actas de congresos |
Citas SCOPUSTM
7
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
5
actualizado el 17-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.