Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/121432
DC FieldValueLanguage
dc.contributor.authorLa Salvia, Marcoen_US
dc.contributor.authorTorti, Emanueleen_US
dc.contributor.authorGazzoni, Marcoen_US
dc.contributor.authorMarenzi, Elisaen_US
dc.contributor.authorLeón Martín, Sonia Raquelen_US
dc.contributor.authorOrtega Sarmiento,Samuelen_US
dc.contributor.authorFabelo Gómez, Himar Antonioen_US
dc.contributor.authorMarrero Callicó, Gustavo Ivánen_US
dc.contributor.authorLeporati, Francescoen_US
dc.date.accessioned2023-03-21T12:09:13Z-
dc.date.available2023-03-21T12:09:13Z-
dc.date.issued2022en_US
dc.identifier.isbn9781665474047en_US
dc.identifier.urihttp://hdl.handle.net/10553/121432-
dc.description.abstractIn recent years, hyperspectral imaging has been employed in several medical applications, targeting automatic diagnosis of different diseases. These images showed good performance in identifying different types of cancers. Among the methods used for classification, machine learning and deep learning techniques emerged as the most suitable algorithms to handle these data. In this paper, we propose a novel hyperspectral image classification architecture exploiting Vision Transformers. We validated the method on a real hyperspectral dataset containing 76 skin cancer images. Obtained results clearly highlight that the Vision Transforms are a suitable architecture for this task. Measured results outperform the state-of-the-art both in terms of false negative rates and of processing times. Finally, the attention mechanism is evaluated for the first time on medical hyperspectral images.en_US
dc.languageengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceProceedings - 2022 25th Euromicro Conference on Digital System Design, DSD 2022 / Himar Fabelo, Samuel Ortega, Amund Skavhaug (Eds.), p. 871-876en_US
dc.subjectInvestigaciónen_US
dc.subject.otherDeep learningen_US
dc.subject.otherMedical hyperspectral imagingen_US
dc.subject.otherSkin canceren_US
dc.subject.otherVision Transformersen_US
dc.titleAttention-based Skin Cancer Classification Through Hyperspectral Imagingen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference25th Euromicro Conference on Digital System Design (DSD 2022)en_US
dc.identifier.doi10.1109/DSD57027.2022.00122en_US
dc.identifier.scopus2-s2.0-85146702343-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage876en_US
dc.description.firstpage871en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.description.numberofpages6en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-4287-3200-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameLeón Martín,Sonia Raquel-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.event.eventsstartdate31-08-2022-
crisitem.event.eventsenddate02-09-2022-
Appears in Collections:Actas de congresos
Adobe PDF (522,99 kB)
Show simple item record

SCOPUSTM   
Citations

7
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

5
checked on Mar 30, 2025

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.