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Abstract—In recent years, hyperspectral imaging has been 
employed in several medical applications, targeting automatic 
diagnosis of different diseases. These images showed good 
performance in identifying different types of cancers. Among 
the methods used for classification, machine learning and deep 
learning techniques emerged as the most suitable algorithms to 
handle these data. In this paper, we propose a novel 
hyperspectral image classification architecture exploiting 
Vision Transformers. We validated the method on a real 
hyperspectral dataset containing 76 skin cancer images. 
Obtained results clearly highlight that the Vision Transforms 
are a suitable architecture for this task. Measured results 
outperform the state-of-the-art both in terms of false negative 
rates and of processing times. Finally, the attention mechanism 
is evaluated for the first time on medical hyperspectral images. 

Keywords—Vision Transformers, medical hyperspectral 
imaging, skin cancer, deep learning. 

I. INTRODUCTION  

Hyperspectral imaging (HSI) acquires 
information about a scene in the spatial and in the 
spectral domains. Thus, the data shapes a cube 
where a spectral vector is associated with each 
pixel. This spectral vector contains the fraction of 
incident electromagnetic radiation reflected upon a 
surface at a specific wavelength. Each material 
features a unique variation of reflectance compared 
to the wavelengths. This variation is called spectral 
signature and enables precise discrimination of 
different materials [1], including tissues [2]. A 
classification system targets the recognition of the 
material contained in each pixel. In the literature, 
several approaches have been proposed to classify 
hyperspectral images (HS), including Machine 

Learning (ML) [3]–[5] and Deep Learning (DL) 
[6]–[8] techniques.  

Among the scientific fields exploiting HS 
classification, medicine emerged as one of the most 
promising. Two main research tracks arised from 
the literature. The first is the development of 
guidance tools to help the surgeon during surgical 
procedures [9], the latter concerns the diagnostic 
support [10].  

Early diagnosis is of utmost importance in 
treating cancer. One of the most common cancer 
forms is skin cancer categorizable as non-
melanoma skin cancer (NMSC) and melanoma. 
NMSC is extremely common, being the 5th most 
common form of cancer worldwide in 2018 [11]. 
Moreover, an extreme progression of melanocytes 
causes Pigmented Skin Lesions (PSLs) classifiable 
as malignant or benign. Finally, atypical moles or 
dysplastic nevi, are benign PSLs, associated with an 
increased risk of evolving to melanoma [12].  

In the literature, HSI for skin cancer detection 
has been investigated in [10], where K-Means 
clustering and Support Vector Machine (SVM) 
classification were employed to discriminate 
between benign and malignant PSLs. Thus, the 
literature focuses on ML techniques for medical HS 
images classification. However, in recent years, DL 
networks emerged as the ideal solution for end-to-
end classification tasks [13]. On the other hand, DL 
algorithms are mainly applied to HSI related to 
remote sensing applications. Thus, to the best of the 
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authors’ knowledge, DL architectures are not 
adopted for HS medical images classification till 
now. 

Among the different DL methods, Vision 
Transformers (ViT) have recently appeared in 
literature [14]. These networks rely on the self-
attention mechanism, at first designed for Natural 
Language Processing (NLP) applications and 
possess a very high number of parameters.  

In this paper, we propose a ViT-based classifier 
targeting HS skin cancer images. The paper is 
organized as follows. Section II introduces the HS 
dataset and the adopted attention-based 
architecture. Moreover, it details the performance 
evaluation methodology and the adopted metrics. 
Section III describes the obtained results and 
compares them with the state-of-the-art. Section IV 
concludes the paper and suggests possible future 
research lines. 

II. MATERIALS AND METHODS 

A. Skin cancer Hyperspectral Dataset 

The HS dataset of skin cancer in-vivo samples 
includes 76 images obtained from 61 subjects. 46 
images contain malignant lesions, while 30 
represent benign skin cancer. These images were 
acquired by the system described in [15], which is 
based on a snapshot HS camera (Cubert UHD 185, 
Cubert GmbH, Ulm, Germany) coupled to a 
Cinegon 1.9/10 (Schneider Optics Inc., Hauppauge, 
NY, USA) lens with an F-number of 1.9 and a focal 
length of 10.4 nm. The illumination system (Dolan-
Jenner, Boxborough, MA, USA) employs a 150 W 
QTH (Quartz-Tungsten Halogen) lamp coupled to 
an optic fiber ring light guide to obtain cold light 
emission. 

Each acquired image contains 125 spectral 
bands covering the visual and near-infrared (VNIR) 
spectral range from 450 to 950 nm, having a spatial 
resolution of 50 × 50 pixels (pixel size of 240 × 240 
μm). All the images have been labelled using the 

 
 

Figure 2 – Architecture of a Vision Transformer. 

 
Figure 1 – Classification taxonomy and images distribution. 
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tool described in [16]. The labelling procedure 
consists of four different classes, namely Benign 
Epithelial (BE), Benign Melanocytic (BM), 
Malignant Epithelial (ME) and Malignant 
Melanocytic (MM). Figure 1 shows the taxonomy 
of the classification. 

A further data processing aimed to standardize 
the spectral signature of each pixel. This calibration 
exploits two reference images acquired before the 
dataset collection. Namely, a white reference image 
( ) was acquired, captured from a white reference 
tile able to reflect 99% of the incident light, and a 
dark reference image ( ), recorded when the light 
was turned off and the camera shutter was closed. 
Eq. (1) provides the calibrated image ( ) is 
obtained from the raw HS image ( ): 

            (1) 

Then, we removed the first four and the last five 
bands due to the low spectral response of the HS 
sensor. The spectral noise has been further reduced 
by applying a smoothing filter based on a moving 
average algorithm with a window of 5. Finally, each 
spectral signature was normalized in the range [0,1] 
with the min-max procedure. Thus, the pre-
processed image contains 116 spectral bands for 
each pixel. 

It is worth noticing that this dataset includes 76 
images, which are not sufficient to train any DL 
model. Thus, we increased the dataset size by 
applying data augmentation. This procedure 
includes geometric transformation, filtering, 
random centre cropping, colour transformations 
and pixel substitution.  Random pixels of tumours 
of the same category undergo bilinear interpolation 
or are directly exchanged. This procedure also 
applies to the skin pixels. Furthermore, the training 
set was enlarged by introducing salt-and-pepper 
white noise. The augmentation procedure was 
carried out iteratively. One of the data 
augmentation techniques was applied to the training 
set. Then, we created a new data cluster by unifying 
the original images and the augmented images and 
applied a second technique to the new group. 
Finally, this procedure was recursively applied to 
broaden the training set exponentially. We did not 
apply such augmentation techniques to neither the 
validation nor the test sets to prevent the results to 
be biased.   
B. Vision Transformers for Hyperspectral Imaging 

Vision transformers (ViT) are DL architectures 
based on the self-attention mechanism [14].  Figure 

2 shows the structure of a ViT. Typically, a ViT 
receives as input a 1-D array. Thus, N-D data, such 
as HS images are transformed into 1-D arrays by 
dividing the original image into patches of the same 
dimension. This partitioning is performed through 
a convolution operation. Let  be a HS 
image with a spatial dimension of  and  
spectral channels. Each patch is denoted with 

 where  is the resolution of a 
single patch. Thus, the number of patches, of which 
an image consists, is . The ViT uses a 
Q-D array of latent variables to project the patches 
in a new space. Then, a class token is associated to 
each patch, together with an array containing 
information about the relative position of each 
patch with respect to the original image (position 
embedding). These data represent the input to the 
Transformer encoder, based on three main 
components: Multi-head Self Attention (MSA), 
Multi-Layer Perceptron (MLP) and normalization. 
The components are connected as shown in Figure 
3. 

In the self-attention mechanism, each input 
vector is projected to generate three vectors: Key 
( ), Query ( ) and Value ( ). For each input 
vector, the attention map is computed according to 
eq. 2: 

    (2) 
where  is a normalization term.  

The Multi-head attention mechanism is based on 
eq. (2), but the main difference is that the ,  and 

 vectors are linearly projected into a suitable space 
and then, in parallel, the attention mechanism is 
applied to the new vectors. Then, the attention 
values are concatenated to obtain the output. 
Typically,  MSL layers are concatenated to 
produce the input for the MLP that generates the 
final classification. 

HS images feature a higher number of channels 
than standard RGB images. Thus, the number of 
multiplications performed by the MSA layer is very 
high. This issue can be solved by introducing 
convolution operations before applying the 
patching procedures. In particular, the solution 
proposed in this paper is to use three convolutional 
layers, each one featuring a 2-D convolutional 
layer, a normalization and a ReLU activation 
function. Each convolutional layer is based on 3 × 
3 filters. The number of filters is 58, 29 and 14 for 
the first, the second and the last convolutional layer, 
respectively. 
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These layers reduced the channels from 116 to 
14. Therefore, the size of the image given as input 
to the ViT is 50 × 50 × 14.  

The proposed strategy reduces both the 
computational complexity and the memory 
occupancy of the ViT architecture compared to 
giving as input the original HS image. 
C. Performance Metrics   

The ViT was trained to classify the lesions into 
four categories, namely malignant melanocytic, 
benign melanocytic, malignant epithelial and 
benign epithelial. 

Since the number of samples included in the 
original dataset is limited, K- fold cross-validation 
is adopted. This statistical method produces metrics 
estimations offering a lower bias than other 
techniques. This method features a single parameter 
called k, which refers to the number of groups in 
which the data sample is split. Mainly the cross-
validation technique is used in applied machine 
learning to estimate the performance of a model on 
unseen data, which was not used during the model 
training.  

The original HS dataset comprising 76 images is 
split into k groups. Next, each unique group was 
selected as test data and the model was trained on 
the remaining groups. Thus, data contained in the 

groups used for training were augmented, as 
described in Section II.A. The model was fit on the 
training set and was evaluated on the test set, 
retaining the prediction evaluated at each iteration 
and discarding the model. In this work, k is set equal 
to 10. Therefore, the model is trained k times, and 
the estimations are stored for each test set. Hence, 
the performance metrics were assessed on the 
aggregated group of predictions. 

We evaluated the classification performance in 
terms of accuracy and specificity, defined 
according to eqs. (3) and (4): 

      (3) 

              (4) 

where , ,  and  indicate the true 
negative, the true positive, the false negative and the 
false positive. 

Another metric adopted for evaluating the 
classification is the False Negative Rate per class 
(FNRc), defined by eq. (5): 

     (5) 

where  is the false negative rate of the  
class and  is the total number of positive predicted 
samples. 

III. EXPERIMENTAL RESULTS 
The ViT architecture described in Section II.B 

has been implemented in MATLAB 2020a, by 
writing custom scripts exploiting the Deep 
Learning Toolbox. The code runs on a PC equipped 
with an Intel i9 9900C CPU processor working at 
3.5 GHz and featuring 128 GB of DDR4 RAM 
memory. The PC is also equipped with two 
NVIDIA RTX 2080 GPUs, each one featuring 2944 
cores working at 1.8 GHz and with 8 GB of DDR6 
RAM memory. 

The network was trained and fine-tuned with a 
small-size dataset. Then, the performance is 
evaluated employing a K-fold cross-validation 
methodology considering K set at 10. Moreover, the 
taxonomy proposed in Figure 1 was adopted as a 
trade-off between being medically relevant, 
complete, and well-suited for DL classifiers. 
Indeed, the considered tree-structure categorization 
allows to treat patients according to the highest 
healthcare standards and provides the best 
achievable classification [17]. Notice that training 
data were augmented adopting the techniques 
described in Section II. 

 
Figure 3 – The architecture of a transformer encoder. 
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Figure 4- Performance of the proposed ViT. Accuracy and 

Specificity are reported as percentages. BE, BM, ME and MM 
represent Benign Epithelia, Benign Melanocytic, Malignant 
Epithelial and Malignant Melanocytic, respectively. 

Figure 4 shows the performance computed on 
the aggregated predictions of the K-fold cross 
validation technique. This chart clearly shows that 
the proposed architecture is capable of classifying 
the benign and malignant melanocytic lesions with 
high accuracy and specificity. On the other hand, 
considering the BE class, the network features a 
high specificity, but the accuracy is around 60 %. 
Therefore, the low number of images contained in 
the original database labelled as BE is not enough 
to efficiently train the proposed network. 

To the best of the authors’ knowledge, HS 
imaging for skin cancer detection was investigated 
in [10], [15]. Both the works rely on the same 
processing chain exploiting K-Means clustering 
and SVM classification. It is important to highlight 
that the classification taxonomy adopted in these 
works is not the same considered in the proposed 
research. Thus, a direct comparison is not fair and 
can be carried out only in terms of FNRc. The work 
in [10] computed the FNRc for 18 images, 
obtaining values up to 60%. In the proposed work, 
the metric is computed adopting the K-fold cross 
validation, being more robust and reliable than the 
values reported in the state-of-the-art. The ViT 
obtained FNRc values ranging from 6% to 30%. 
Therefore, the proposed attention-based network 
represents an interesting and promising solution for 
the skin cancer detection in HS images. 

We characterized the performance of the 
network also in terms of processing time measured 
considering the classification of 100 images and 
computing the mean processing time and its 
standard deviation. The mean processing time is 
equal to 65.2 ms, with a standard deviation of 7.5 
ms. The system proposed in [15] and parallelized in 

[10] takes variable processing times, ranging from 
350.0 ms to 2.06 s. Hence, the proposed work 
outperforms the state-of-the-art in terms of 
processing speed. Moreover, the variability of the 
processing time featured by this work is 
significantly lower than the state-of-the-art. Indeed, 
the ViT architecture has a fixed number of layers 
that perform a fixed number of operations. On the 
other hand, the processing chain proposed in 
literature includes the K-Means clustering, which 
iterates the operations based on the clustering error. 
Thus, the number of iterations performed by this 
method is not deterministic and strictly depends on 
the initial values of cluster centroids. 

IV. CONCLUSION 

In this paper, we proposed a novel attention-
based network to classify skin cancer exploiting HS 
images. The proposed network is designed and 
validated using a real HS dataset, adopting the K-
fold cross validation technique to produce robust 
results. 

Since the original dataset featured only 76 
image, we applied data augmentations to the real 
data. Performed augmentations included 
geometrical transformations, filtering, random 
centre cropping, colour transformations, pixel 
substitution and random addition of gaussian white 
noise. 

The model was trained augmenting at runtime 
the training set and then performing the tests only 
on the real imaging, considering a number of folds 
equals to 10. 

The obtained results clearly highlight that the 
attention-based mechanism is an interesting and 
promising solution for medical HS images 
classification, since the false negative rate is half 
compared to the state-of-the-art. 

Moreover, the classification times are 
significantly lower than the best solutions proposed 
in the literature. Finally, the proposed network 
adopts a fixed number of layers while the number 
of operations is deterministic, making the measured 
processing time more stable than the results 
reported in the literature. 

Future research will focus on improving the 
proposed network, evaluating different 
configuration of the layers.   
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