Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121350
Título: Enhancing A Multiobjective Evolutionary Algorithm Through Flexible Evolution
Autores/as: Salazar, D
Galván González, Blas José 
Winter Althaus, Gabriel 
Clasificación UNESCO: 12 Matemáticas
Palabras clave: Evolutionary Algorithms
Fecha de publicación: 2004
Conferencia: Genetic and Evolutionary Computation Conference (GECCO-2004)
Resumen: In this paper the use of a powerful single-objective optimization methodology in Multi-objective Optimization Algorithms (MOEAs) is introduced. The Flexible Evolution concepts (FE) have been recently developed and proved its efficiency gains compared with several Evolutionary Algorithms solving single-objective challenging problems. The main feature of such concepts is the flexibility to self-adapt the internal behaviour of the algorithm to optimize its search capacity. In this paper we present the first attempt to incorporate FE into MOEAs. A real coded NSGA-II algorithm was modified replacing the crossover and mutation operators with the Sampling Engine of FE. Other two FE characteristics were implemented too: The Probabilistic Control Mechanism and the Enlarged Individual’s Code. The performance of the resulting algorithm has been compared with the classical NSGA-II using several test functions. The results obtained and presented show that FE_based algorithms have advantages over the classical ones, especially when optimizing highly multimodal complex functions.
URI: http://hdl.handle.net/10553/121350
Colección:Actas de congresos
Adobe PDF (423,25 kB)
Vista completa

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.