Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/121350
DC FieldValueLanguage
dc.contributor.authorSalazar, Den_US
dc.contributor.authorGalván González, Blas Joséen_US
dc.contributor.authorWinter Althaus, Gabrielen_US
dc.date.accessioned2023-03-18T18:35:36Z-
dc.date.available2023-03-18T18:35:36Z-
dc.date.issued2004en_US
dc.identifier.urihttp://hdl.handle.net/10553/121350-
dc.description.abstractIn this paper the use of a powerful single-objective optimization methodology in Multi-objective Optimization Algorithms (MOEAs) is introduced. The Flexible Evolution concepts (FE) have been recently developed and proved its efficiency gains compared with several Evolutionary Algorithms solving single-objective challenging problems. The main feature of such concepts is the flexibility to self-adapt the internal behaviour of the algorithm to optimize its search capacity. In this paper we present the first attempt to incorporate FE into MOEAs. A real coded NSGA-II algorithm was modified replacing the crossover and mutation operators with the Sampling Engine of FE. Other two FE characteristics were implemented too: The Probabilistic Control Mechanism and the Enlarged Individual’s Code. The performance of the resulting algorithm has been compared with the classical NSGA-II using several test functions. The results obtained and presented show that FE_based algorithms have advantages over the classical ones, especially when optimizing highly multimodal complex functions.en_US
dc.languageengen_US
dc.subject12 Matemáticasen_US
dc.subject.otherEvolutionary Algorithmsen_US
dc.titleEnhancing A Multiobjective Evolutionary Algorithm Through Flexible Evolutionen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceGenetic and Evolutionary Computation Conference (GECCO-2004)en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.description.notasLate Breaking Papers. Workshop Proceedings, Tutorials, Late Breaking Papers, and Evolutionary Computation in Industry Track Presentations. (CD-ROM) X-CD Technologiesen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0003-0890-7267-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameGalvan Gonzalez,Blas Jose-
crisitem.author.fullNameWinter Althaus, Gabriel-
Appears in Collections:Actas de congresos
Adobe PDF (423,25 kB)
Show simple item record

Page view(s)

94
checked on Aug 31, 2024

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.