Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121350
Campo DC Valoridioma
dc.contributor.authorSalazar, Den_US
dc.contributor.authorGalván González, Blas Joséen_US
dc.contributor.authorWinter Althaus, Gabrielen_US
dc.date.accessioned2023-03-18T18:35:36Z-
dc.date.available2023-03-18T18:35:36Z-
dc.date.issued2004en_US
dc.identifier.urihttp://hdl.handle.net/10553/121350-
dc.description.abstractIn this paper the use of a powerful single-objective optimization methodology in Multi-objective Optimization Algorithms (MOEAs) is introduced. The Flexible Evolution concepts (FE) have been recently developed and proved its efficiency gains compared with several Evolutionary Algorithms solving single-objective challenging problems. The main feature of such concepts is the flexibility to self-adapt the internal behaviour of the algorithm to optimize its search capacity. In this paper we present the first attempt to incorporate FE into MOEAs. A real coded NSGA-II algorithm was modified replacing the crossover and mutation operators with the Sampling Engine of FE. Other two FE characteristics were implemented too: The Probabilistic Control Mechanism and the Enlarged Individual’s Code. The performance of the resulting algorithm has been compared with the classical NSGA-II using several test functions. The results obtained and presented show that FE_based algorithms have advantages over the classical ones, especially when optimizing highly multimodal complex functions.en_US
dc.languageengen_US
dc.subject12 Matemáticasen_US
dc.subject.otherEvolutionary Algorithmsen_US
dc.titleEnhancing A Multiobjective Evolutionary Algorithm Through Flexible Evolutionen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceGenetic and Evolutionary Computation Conference (GECCO-2004)en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.description.notasLate Breaking Papers. Workshop Proceedings, Tutorials, Late Breaking Papers, and Evolutionary Computation in Industry Track Presentations. (CD-ROM) X-CD Technologiesen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0003-0890-7267-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameGalvan Gonzalez,Blas Jose-
crisitem.author.fullNameWinter Althaus, Gabriel-
Colección:Actas de congresos
Adobe PDF (423,25 kB)
Vista resumida

Visitas

39
actualizado el 11-may-2024

Descargas

19
actualizado el 11-may-2024

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.