Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121272
Título: High-throughput synthesis of core–shell and multi-shelled materials by fluidised bed chemical vapour deposition. Case study: double-shell rutile–anatase particles
Autores/as: Powell, M. J.
Quesada Cabrera, Raúl 
Travis, W. L.
Parkin, I. P.
Clasificación UNESCO: 221027 Estados de la materia
220807 Física de partículas
221022 Fotoquímica
Fecha de publicación: 2015
Publicación seriada: Journal of Materials Chemistry A 
Resumen: Fluidised Bed Chemical Vapour Deposition (FBCVD) has been widely used for the industrial production of corrosion resistant and mechanically robust coatings. Laboratory-based FBCVD rigs are less common, however, this technique is ideal for the high-throughput production of core–shell and multi-shelled materials, allowing large areas to be coated in a fast and cost effective way. The method is also convenient for the optimisation of advanced materials with tuned structural, electronic and functional properties. In this work, the synthesis of double-shelled rutile–anatase TiO2 particles is presented as a case study. Electron transfer mechanisms at the junction level of the two polymorphs have been reported as responsible for the high efficiency of TiO2-based materials, such as the well-known Evonik P25 standard. The photocatalytic performance of the double-shelled particles was evaluated during the mineralisation of a model organic pollutant (stearic acid) and compared with that of the individual components. To the best of our knowledge, this is the first time that multi-shelled particles have been synthesised from a chemical vapour deposition route.
URI: http://hdl.handle.net/10553/121272
ISSN: 2050-7488
DOI: 10.1039/C5TA03526K
Fuente: Journal of Materials Chemistry A [ISSN 2050-7488], v. 3(33), p. 17241-17247
Colección:Artículos
Vista completa

Citas SCOPUSTM   

6
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 17-nov-2024

Visitas

20
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.