Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121272
Campo DC Valoridioma
dc.contributor.authorPowell, M. J.-
dc.contributor.authorQuesada Cabrera, Raúl-
dc.contributor.authorTravis, W. L.-
dc.contributor.authorParkin, I. P.-
dc.date.accessioned2023-03-16T12:01:17Z-
dc.date.available2023-03-16T12:01:17Z-
dc.date.issued2015-
dc.identifier.issn2050-7488-
dc.identifier.urihttp://hdl.handle.net/10553/121272-
dc.description.abstractFluidised Bed Chemical Vapour Deposition (FBCVD) has been widely used for the industrial production of corrosion resistant and mechanically robust coatings. Laboratory-based FBCVD rigs are less common, however, this technique is ideal for the high-throughput production of core–shell and multi-shelled materials, allowing large areas to be coated in a fast and cost effective way. The method is also convenient for the optimisation of advanced materials with tuned structural, electronic and functional properties. In this work, the synthesis of double-shelled rutile–anatase TiO2 particles is presented as a case study. Electron transfer mechanisms at the junction level of the two polymorphs have been reported as responsible for the high efficiency of TiO2-based materials, such as the well-known Evonik P25 standard. The photocatalytic performance of the double-shelled particles was evaluated during the mineralisation of a model organic pollutant (stearic acid) and compared with that of the individual components. To the best of our knowledge, this is the first time that multi-shelled particles have been synthesised from a chemical vapour deposition route.-
dc.languageeng-
dc.relation.ispartofJournal of Materials Chemistry A-
dc.sourceJournal of Materials Chemistry A [ISSN 2050-7488], v. 3(33), p. 17241-17247-
dc.subject221027 Estados de la materia-
dc.subject220807 Física de partículas-
dc.subject221022 Fotoquímica-
dc.titleHigh-throughput synthesis of core–shell and multi-shelled materials by fluidised bed chemical vapour deposition. Case study: double-shell rutile–anatase particles-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1039/C5TA03526K-
dc.identifier.scopus2-s2.0-84939145612-
dc.identifier.isiWOS:000359459900039-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue33-
dc.relation.volume3-
dc.investigacionCiencias-
dc.type2Artículo-
dc.identifier.external20436832-
dc.utils.revision-
dc.identifier.ulpgcNo-
dc.contributor.buulpgcBU-BAS-
dc.description.sjr2,672
dc.description.jcr8,262
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUNAT: Fotocatálisis y espectroscopía para aplicaciones medioambientales.-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.orcid0000-0002-6288-9250-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.fullNameQuesada Cabrera, Raúl-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

6
actualizado el 14-jul-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 14-jul-2024

Visitas

20
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.