Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/119941
Título: A Bayesian homogeneity test for comparing Poisson populations
Autores/as: Girón, Francisco Javier
Martel Escobar, María Carmen 
Vázquez Polo, Francisco José 
Clasificación UNESCO: 5302 Econometría
Palabras clave: Bayesian Test
Hierarchical Priors
Homogeneity
Poisson
Fecha de publicación: 2022
Publicación seriada: Applied Stochastic Models in Business and Industry 
Resumen: For a wide class of daily applications in industrial quality control, there may be interest in comparing several Poisson means. A large catalogue of frequentist procedures for this hypothesis testing problem is available. However, some common drawbacks of them are their low power, interpretation of the (Formula presented.) -values for multiple comparison, among many others. In this paper, we present a unified Bayesian approach to the problem based on a model selection approach developed using a product partition clustering model. The posterior probabilities for models obtained are derived directly from the associated Bayes factors which are calculated by considering a simple hierarchical prior structure which has a quasi–closed form, easily computed by numerical procedures. This approach constitutes a readily implementable alternative to frequentist multiple testing procedures where uncertainty concerning all possible “types of homogeneity” is ignored. The proposed methodology allows for an intuitive interpretation based directly on posterior probabilities of the partitions involved in the testing problem. We illustrate its performance with three real data sets.
URI: http://hdl.handle.net/10553/119941
ISSN: 1524-1904
DOI: 10.1002/asmb.2727
Fuente: Applied Stochastic Models in Business and Industry[ISSN 1524-1904], (Enero 2022)
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.