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Abstract
For a wide class of daily applications in industrial quality control, there may be
interest in comparing several Poisson means. A large catalogue of frequentist
procedures for this hypothesis testing problem is available. However, some com-
mon drawbacks of them are their low power, interpretation of the p-values for
multiple comparison, among many others. In this paper, we present a unified
Bayesian approach to the problem based on a model selection approach devel-
oped using a product partition clustering model. The posterior probabilities for
models obtained are derived directly from the associated Bayes factors which
are calculated by considering a simple hierarchical prior structure which has
a quasi–closed form, easily computed by numerical procedures. This approach
constitutes a readily implementable alternative to frequentist multiple testing
procedures where uncertainty concerning all possible “types of homogeneity”
is ignored. The proposed methodology allows for an intuitive interpretation
based directly on posterior probabilities of the partitions involved in the testing
problem. We illustrate its performance with three real data sets.
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1 INTRODUCTION

The use of the Poisson distribution in a large variety of scientific fields has widely been recognized and the literature is full
of case studies where the Poisson model is well suited for data modeling where events of interest are counted randomly
per unit of space or time. The problem of comparison of counts arising from Poisson distributions is also of interest in the
statistical literature1 as well as in the quality control one.2 In industrial quality control, the Poisson distribution and its
extensions is a common statistical model in many disciplines from CUSUM charts to monitored count–type observations
correlated over time where a Poisson marginal is appropriate3 to reliability,4 to name just a couple.

Since the seminal paper by Przyborowski and Wilenski5 introducing a conditional test for testing the difference
between two Poisson means, many methods based on conditional binomial distributions has been developed.6,7 Also,
either normal approximations for assessing confidence interval for the parameter difference, 𝜆1 − 𝜆2 or numerical
procedures for computing confidence intervals for the ratio 𝜆1∕𝜆2 are given in Cousins.8 Based on Anscombe’s vari-
ance stabilizing transformation, Brown and Zhao9 proposed an alternative procedure for testing whether a sample
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observations comes from a simple Poisson distribution when two or more populations are considered. In general, this
problem is related to the homogeneity test for different statistical models and the multiple testing options when the null
hypothesis of homogeneity is rejected. There are a large number of procedures to multiple testing in the literature, all
of them with several concerns and difficulties such as the right interpretation of different p-values for multiple compar-
ison, power behavior of the Pearson’s 𝜒2–statistic, among many others.10 Other alternatives as the parametric bootstrap
has also been considered. Chiu and Wang11 found that common asymptotic tests perform similarly and their powers are
close to those of their parametric bootstrap counterparts when the observed counts are large enough. There are just a
few available papers using a Bayesian approach to the problem.12-14 The above references, frequentist and Bayesian ones,
show that there is no single procedure that performs better than the others.

In this paper, we address the problem of hypothesis testing about several Poisson means from a different standpoint,
considering that it can be regarded as a clustering problem and thus, jointly with the original homogeneity problem,
all possible data configurations can be tested using a Bayesian procedure from which the posterior probabilities of each
cluster model is computed. We present a unified Bayesian approach that overcomes the drawbacks of other procedures.
The following motivating example help us to focus on the problem.

1.1 Motivating example

Table 1, extracted from Nelson15 corresponds to an study developed in Poirier et al.16 on potential carcinogenicity of
several chemical compounds, where four groups of mice were treated with different doses of methyl iodide: zero (labeled
as i = 1), low (corresponds to 0.06 mmoles per kg of mouse and labeled as i = 2), medium (0.15 mmoles per kg, i = 3) and
high (0.31 mmoles per kg, i = 4). A Poisson model is assumed for each group. The interest is focused on testing the null
hypothesis that all the four Poisson means are equal.

Nelson(1987) conducted a 𝜒2−test with 4 − 1 = 3 degrees of freedom, based on the approximation to the multinomial
distribution. As Nelson pointed out (example 7, page 177):

Therefore, the null hypothesis of equal Poisson processes is not rejected. Three of the four expected values are less
than five, but the fear that a small expected value (denominator) will cause a spuriously large contribution to
chi–square is of no concern in this example because this result falls far short of being statistically significant.

Following the Bayesian clustering procedure proposed in this article, the results obtained offer a much more detailed
and accurate reading for the Poisson means comparison purposes. The most probable configuration corresponds to the
hypothesis that all samples are homogeneous and has posterior probability 0.416 (see Table 3 in Section 3.1). This result
is in some accordance with Nelson.15 However, the structure of the clustering partition induced by the dataset in Table 2
indicates that different forms of homogeneity could be present. To cluster the samples, we follow the product partition
model suggested by Barry and Hartigan.17

Let xi = (ni, ti) denote the observed data in sample i = 1, … , 4. There is a one–to–one correspondence between every
partition of the parametric space and the partition of the sample data. For instance, the null hypothesis of equal Poisson
means 𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 or equivalently {{𝜆1, 𝜆2, 𝜆3, 𝜆4}}, corresponds to the single data set {{x1 ∪ x2 ∪ x3 ∪ x4}},which
we denote {{x1, x2, x3, x4}}. At the other extreme, when all samples are heterogeneous among them, the configuration
{{x1}, {x2}, {x3}, {x4}} is equivalent to the multiple hypothesis 𝜆1 ≠ 𝜆2 ≠ 𝜆3 ≠ 𝜆4.

When k Poisson populations are compared, r ∈ {1, … , k} type of groupings or clusters are possible (in Table 2 referred
to as homogeneity, type 2–heterogeneity, type 3–heterogeneity and heterogeneity, respectively). The total number of pos-
sible partitions is given by the Bell number18 Bk =

∑k
r=1S(k, r), where S(k, r) is the Stirling number of the second kind

T A B L E 1 Number of tumors (ti) detected in (ni) mice

Doses

1 2 3 4

ni 154 19 20 11

ti 34 4 6 5
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1160 GIRÓN et al.

T A B L E 2 Cluster configurations for dataset in Nelson15

Configurations Parameters relationship

Homogeneity

{{x1, x2, x3, x4}} 𝜆1 = 𝜆2 = 𝜆3 = 𝜆4

Type 2–Homogeneity

{{x1, x2}, {x3, x4}} 𝜆1 = 𝜆2 ≠ 𝜆3 = 𝜆4

{{x1, x3}, {x2, x4}} 𝜆1 = 𝜆3 ≠ 𝜆2 = 𝜆4

{{x1, x4}, {x2, x3}} 𝜆1 = 𝜆4 ≠ 𝜆2 = 𝜆3

{{x1}, {x2, x3, x4}} 𝜆1 ≠ 𝜆2 = 𝜆3 = 𝜆4

{{x2}, {x1, x3, x4}} 𝜆2 ≠ 𝜆2 = 𝜆3 = 𝜆4

{{x3}, {x1, x2, x4}} 𝜆3 ≠ 𝜆1 = 𝜆2 = 𝜆4

{{x4}, {x1, x2, x3}} 𝜆4 ≠ 𝜆1 = 𝜆2 = 𝜆3

Type 3–Homogeneity

{{x1, x2}, {x3}, {x4}} 𝜆1 = 𝜆2 ≠ 𝜆3 ≠ 𝜆4

{{x1, x3}, {x2}, {x4}} 𝜆1 = 𝜆3 ≠ 𝜆2 ≠ 𝜆4

{{x1, x4}, {x2}, {x3}} 𝜆1 = 𝜆4 ≠ 𝜆2 ≠ 𝜆3

{{x1}, {x2, x3}, {x4}} 𝜆1 ≠ 𝜆2 = 𝜆3 ≠ 𝜆4

{{x1}, {x2, x4}, {x3}} 𝜆1 ≠ 𝜆2 = 𝜆4 ≠ 𝜆3

{{x2}, {x1}, {x3, x4}} 𝜆2 ≠ 𝜆1 ≠ 𝜆3 = 𝜆4

Heterogeneity

{{x1}, {x2}, {x3}, {x4}} 𝜆1 ≠ 𝜆2 ≠ 𝜆3 ≠ 𝜆4

which indicates the number of (ordered) partitions of the sample of size k into r clusters.19 Table 2 shows the 15 partitions
corresponding to k = 4, that is, B4 = 15.

The selection of any one model among all of them is then an alternative to frequentist multiple testing procedures
where uncertainty concerning all possible configurations is ignored. The procedure is not affected by the ‘size of means’,
that is, discussions based on whether the rates are small or large as in the frequentist methodology do not arise in our
procedure. Including, the case where a preponderance of zeros be present in the sample.

The rest of the paper is organized as follows. Section 2 proposes the novel approach to homogeneity test for several
Poisson populations. The third section provides three real–dataset examples where we illustrate the use and versatility
of this approach. Section 4 presents the results of numerical simulations on the frequentist evaluation of the Bayesian
procedure presented. In Section 5, we derive a natural extensions of the methodology proposed. Finally, Section 6 presents
some concluding remarks. In the Supplementary Materials, Mathematica and R codes can be downloaded, which we
have developed in order to make the novel approach more accesible and reproducible.

2 THE MODEL

Following Chang et al.,20 let us assume that we have independent Poisson observations

Xi ∼ Po(𝜆i), i = 1, 2, … , k(≥ 2), (1)

with 𝜆i = ni𝛾i and where Xi represent the number of events of type–i taking place over time or space of size ni.The problem
of interest is to test

H0 ∶ 𝛾1 = 𝛾2 = … = 𝛾k versus Ha ∶ 𝛾i ≠ 𝛾j for some i ≠ j.
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GIRÓN et al. 1161

That is, we are interested in comparing the rate of occurrence of events 𝛾i’s. However in practice, for given population i,
we have samples of size ni from independent Po(𝛾i) and by sufficiency one can look only at Si =

∑ni
j=1Xij which follows a

Poisson distribution with mean ni𝛾i, and therefore the role of Xi in (1) can be played by Si. For simplicity then, we will
use the simplest notation in model (1).

Let x = (x1, … , xk) be independent samples of k Poisson populations Po(𝜆1), … ,Po(𝜆k)with sample sizes n1, … ,nk.
Also, let us consider z = (z1, … , zm) any configuration of length m, with 1 ≤ m ≤ k, that is, z is a partition of sample x
in m blocks. For instance, Table 2 contains all configurations z of length m = 1, … , 4. We denote by ti =

∑ni
j=1xij the total

number of counts in sample xi, i = 1, … , k, n =
∑k

i=1ni and t =
∑k

i=1ti.

It is apparent that the likelihood function have different expressions on each cluster configuration of the samples z.
Each model induced by z indicates a different heterogeneity structure of the sampling model, and its posterior proba-
bility informs us about the uncertainty for this configuration. The comparison of Poisson means is then equivalent to
a homogeneity test with null model H0 ∶ 𝜆1 = 𝜆2 = … = 𝜆k = 𝜆. Here, we assume that 𝜆1 = 𝜆2 = … = 𝜆k = 𝜆, and the
parameters of the competing model (hypothesis) H1z are denoted by 𝜆1, … , 𝜆m, in order to simplify the notation and
keeping in mind that they are different.

In the Bayesian approach, for each configuration structure in a set of candidate models, model uncertainty is quan-
tified based on its posterior model probability, and Bayes factors play a crucial role discriminating between competing
models. The Bayes factor for comparing model H0 vs H1z is given by

B0z =
f0(x)
f1(z)

, (2)

where f0(x) and f1(z) are the marginal distributions of the data x and z, respectively, given by

f0(x) =
∫

∞

0
f0(x|𝜆)𝜋(𝜆) d𝜆, (3)

and

f1(z) =
∫

∞

0
f1(z|𝜆)𝜋(𝜆) d𝜆, (4)

where 𝜋(𝜆) is the prior distribution on the hyperparameters 𝜆, and f1(z|𝜆) is defined below, and it depends on the
hierarchical model that relates the 𝜆1, … , 𝜆m of partition z with the parameter 𝜆 of the null hypothesis.

In general, the best model (equivalently, configuration z⋆) is the one that maximizes the posterior probability of the
models

Pr(z|x) =
Pr(z)B0z

∑
z∈k

Pr(z)B0z
, ∀z ∈ k, (5)

where Pr(z) denotes the prior probability of configuration z and k the set of all cluster configurations given k samples.
A common objective prior for hypothesis testing purposes is the discrete uniform prior Pr(z) = 1

Bk
, for all z ∈ k.

2.1 The marginals distributions

The likelihood function of the data x under the null hypothesis is

f0(x|𝜆) =
k∏

i=1
Po(xi|𝜆) =

1
∏k

i=1
∏ni

j=1xij!
𝜆

∑k
i=1ti exp(−𝜆

k∑

i=1
ni) ∝ 𝜆t exp(−n𝜆), (6)

On the other hand, for any configuration z of length m, the likelihood function is

f1(z|𝜆1, … , 𝜆m) = f1(z1, … , zm|𝜆1, … , 𝜆m) =
m∏

s=1
f (zs|𝜆s) ∝

m∏

s=1
𝜆

ts
s exp(−ms𝜆s), (7)
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1162 GIRÓN et al.

where ts and ms are the total number of counts and the length of vector of sample zs, respectively. Observe that the
proportionally constant in (7) coincides with that in expression (6).

However, the likelihood function f1(z|𝜆) in (4) cannot be obtained using the information from xi in sample i,which is
related to 𝜆i but not to 𝜆. Therefore, we need a distribution 𝜋(𝜆i|𝜆) to link parameters 𝜆i and 𝜆. Following Girón,21 desir-
able properties for the link distributions 𝜋(𝜆i|𝜆) should be: (i) related to that of the statistical model f (x|𝜆), (ii) centered
around the parameter 𝜆, and (iii) its variance (or any other measure of dispersion if variance does not exist) accommodates
tentative existing differences among the 𝜆i.

The parameters 𝜆1, … , 𝜆m of any partition can be a priori regarded as exchangeable, that is, they are conditionally
independent given the parameter of the null model 𝜆, according to the link distribution 𝜋(𝜆i|𝜆) and hence, the joint link
distribution for any partition of length m is given by

𝜋(𝜆1, … , 𝜆m|𝜆) =
m∏

s=1
𝜋(𝜆s|𝜆). (8)

Using (8), the likelihood function f1(z|𝜆) is obtained by integration

f1(z|𝜆) =
∫

∞

0
f1(z1, … , zm|𝜆1, … , 𝜆m)𝜋(𝜆1, … , 𝜆m|𝜆) d𝜆1 … d𝜆m =

m∏

s=1

(

∫

∞

0
f (zs|𝜆s)𝜋(𝜆s|𝜆) d𝜆s

)

. (9)

According to the above mentioned properties, a well suited choice of the link distribution relating parameter 𝜆i with
parameter 𝜆 is the conjugate Gamma(𝜆i|𝜆∕2, 1∕2), i.e.

𝜋(𝜆i|𝜆) =
1

2𝜆∕2Γ(𝜆∕2)
𝜆
𝜆∕2−1
i exp(−𝜆i∕2), (10)

where E(𝜆i|𝜆) = 𝜆 and V(𝜆i|𝜆) = 2𝜆. Observe that this hierarchical conditional prior satisfy all three desirable properties
given above.

From (7) and (10) we obtain

f1(z|𝜆) =
1

Γ(𝜆∕2)m

m∏

s=1

Γ(ts + 1∕2)
(ms + 1∕2)ts(2ms + 1)𝜆∕2 . (11)

Other alternative links can obviously be considered. Moreno et al.22 considered intrinsic linking distributions in
meta–analysis scenarios which also present the above interesting properties. In practice, numerical results obtained from
both link distributions are very similar, even for small samples. Hence, we adopt a conjugate gamma link distribution
which is very simple and does not require intensive use of numerical procedures for compute the quantities of interest.

Finally, to complete integrals in (3) and (4) we use the non–informative reference prior for the parameter of the null 𝜆,

𝜋(𝜆) ∝ 𝜆−1∕2
, (12)

which can be thought of as a limit Gamma(𝜆|1∕2, 𝜀) with 𝜀→ 0. Observe that since zj|𝜆j ∼ Po(𝜆j) and
𝜆j|𝜆 ∼ Ga(𝜆j|𝜆∕2, 1∕2), the conditional distribution of zj|𝜆 is a Negative Binomial distribution with parameters 𝜆∕2
and 1∕3. The mean and variance of this distribution are 𝜆 y 3𝜆, respectively. After some algebra, its associated Fisher
information is given by

I(𝜆) = −EZ|𝜆

(
𝜕

2 log f (z|𝜆)
𝜕𝜆2

)

= 1
4

EZ|𝜆
(
𝜓
(1)(z + 𝜆∕2) − 𝜓 (1)(z)

)
,

where 𝜓 (1)(z) represents the first derivative of the digamma function 𝜓(z) = logΓ(z), and Z|𝜆 ∼ NB(z|𝜆∕2, 1∕3). This
quantity need to be computed numerically over the parametric space 𝜆 > 0, and presents a decreasing J–inverted behavior
slowly approaching zero as 𝜆 grows. Fortunately, such Negative Binomial distribution can be adequately approximated
by a Normal (z|𝜆, 3𝜆), which Fisher information is given by (2𝜆 + 3)∕6𝜆2

, and henceforth an uninformative prior “à la
Jeffreys” is 𝜋(𝜆) ∝

√
I(𝜆) ∝ 𝜆−1∕2

, for large values of 𝜆, as we proposed in (12).
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GIRÓN et al. 1163

Hence,

f0(x) ∝
∫

∞

0
𝜆

t exp(−n𝜆)𝜆−1∕2 d𝜆 =
Γ(t + 1∕2)

nt+1∕2 , (13)

and

f1(z) ∝
∫

∞

0

𝜆
−1∕2

Γ(𝜆∕2)m

m∏

s=1

Γ(ts + 1∕2)
(ms + 1∕2)ts(2ms + 1)𝜆∕2 d𝜆. (14)

As the arbitrary constant involved in the improper prior is the same in equations (13) and (14), they cancel out in the
expression of the Bayes factor in (2),

B0z =
Γ(t + 1∕2)

nt+1∕2

(

∫

∞

0

𝜆
−1∕2

Γ(𝜆∕2)m

m∏

s=1

Γ(ts + 1∕2)
(ms + 1∕2)ts (2ms + 1)𝜆∕2 d𝜆

)−1

. (15)

Bayes factor in (15) is computed numerically for each sample z.

3 NUMERICAL ILLUSTRATIONS

To illustrate the procedure developed above, we now analyse two real datasets. The Mathematica and R codes for each
case study are available in the Supplementary Material section.

3.1 Motivating example revisited

We revisit the real dataset from Nelson (1987). Table 3 shows the posterior probabilities of each cluster configuration.
The prior distribution on the partitions Pr(z) in (3) plays an important role now. Figures in Table 3 are obtained from a
Uniform prior assigned to each configuration which assigns the same probability to every model, that is,

Pr(z) = 1
B4
= 1

15
, ∀z ∈ 4.

We can now obtain several quantities of interest. The partition identified as the null hypothesis is the most probable
with posteriori probability 0.416. The Type 2–homogeneity cluster concentrates the highest posterior probability (0.471)
with the 𝜆1 = 𝜆2 = 𝜆3 ≠ 𝜆4 configuration being the most probable with probability 0.140. Observe that the homogeneity
along with the Type 2–homogeneity clusters accumulate more than 0.887 of the posterior probability, indicating that there
is a clearcut structure of homogeneity in this dataset. Furthermore, the configuration which represents the hypothesis
that all samples are heterogeneous among them, or equivalently 𝜆1 ≠ 𝜆2 ≠ 𝜆3 ≠ 𝜆4, has a very small posterior probability
0.005 meaning that full heterogeneity is clearly rejected.

On other hand, by summing up the probabilities of all the configurations where each of the samples appears as a single
cluster, we obtain their marginal probabilities. In this way, we can observe which population is more different from the
others. In particular, population 4 is the more distant with a probability of 0.217. The remaining marginal probabilities
are 0.102, 0.105, and 0.107 for populations 1, 2, and 3, respectively.

Similarly, pairwise comparisons are also easy to obtain. Posterior marginal probabilities of each one are: 0.120 (for the
pair {x1, x2}), 0.073 (for {x1, x3}), 0.045 (for {x1, x4}), 0.055 (for {x2, x3}), 0.059 (for {x2, x4}) and 0.107 (for {x3, x4}).

Posterior distributions of 𝝀i

The posterior behavior of the parameters of interest 𝜆i’s is also relevant once the clustering procedure is applied to the
data, and can help us to compare Poisson populations.
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1164 GIRÓN et al.

T A B L E 3 Posterior probabilities of the partitions in the motivating example

Configurations Parameters relationship Post. Prob.

Homogeneity

{{x1, x2, x3, x4}} 𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 0.416

Type 2–Homogeneity

{{x1, x2}, {x3, x4}} 𝜆1 = 𝜆2 ≠ 𝜆3 = 𝜆4 0.092

{{x1, x3}, {x2, x4}} 𝜆1 = 𝜆3 ≠ 𝜆2 = 𝜆4 0.049

{{x1, x4}, {x2, x3}} 𝜆1 = 𝜆4 ≠ 𝜆2 = 𝜆3 0.036

{{x1}, {x2, x3, x4}} 𝜆1 ≠ 𝜆2 = 𝜆3 = 𝜆4 0.051

{{x2}, {x1, x3, x4}} 𝜆2 ≠ 𝜆1 = 𝜆3 = 𝜆4 0.050

{{x3}, {x1, x2, x4}} 𝜆3 ≠ 𝜆1 = 𝜆2 = 𝜆4 0.053

{{x4}, {x1, x2, x3}} 𝜆4 ≠ 𝜆1 = 𝜆2 = 𝜆3 0.140

Type 3–Homogeneity

{{x1, x2}, {x3}, {x4}} 𝜆1 = 𝜆2 ≠ 𝜆3 ≠ 𝜆4 0.029

{{x1, x3}, {x2}, {x4}} 𝜆1 = 𝜆3 ≠ 𝜆2 ≠ 𝜆4 0.024

{{x1, x4}, {x2}, {x3}} 𝜆1 = 𝜆4 ≠ 𝜆2 ≠ 𝜆3 0.010

{{x1}, {x2, x3}, {x4}} 𝜆1 ≠ 𝜆2 = 𝜆3 ≠ 𝜆4 0.019

{{x1}, {x2, x4}, {x3}} 𝜆1 ≠ 𝜆2 = 𝜆4 ≠ 𝜆3 0.010

{{x1}, {x2}, {x3, x4}} 𝜆1 ≠ 𝜆2 ≠ 𝜆3 = 𝜆4 0.016

Heterogeneity

{{x1}, {x2}, {x3}, {x4}} 𝜆1 ≠ 𝜆2 ≠ 𝜆3 ≠ 𝜆4 0.005

We first need compute the posterior distribution of the hyperparameter 𝜆. Equation (12) provides the prior 𝜋(𝜆), and
equation (11) when computed for the homogeneity partition x, the so called integrated likelihood of the whole data

f (x|𝜆) ∝ 1
Γ(𝜆∕2)k

k∏

i=1

Γ(ti + 1∕2)
(ni + 1∕2)ti (2ni + 1)𝜆∕2 . (16)

Therefore, by Bayes theorem, the posterior density of 𝜆 is proportional to

𝜋(𝜆|x) ∝ 𝜋(𝜆)f (x|𝜆) = 𝜆−1∕2 1
Γ(𝜆∕2)k

k∏

i=1

Γ(ti + 1∕2)
(ni + 1∕2)ti(2ni + 1)𝜆∕2 . (17)

where the normalizing constant can be easily obtained by numerical integration.
From the hierarchical model developed in Section 2, we can now derive the posterior distributions of the 𝜆i in terms

of the posterior of 𝜆.
Given 𝜆 and x, it follows that 𝜆i|𝜆, x are conditionally independent and each follows a Gamma distribution, that is

𝜋(𝜆i|𝜆, x) = Gamma(𝜆i|ti + 𝜆,ni + 1∕2), (18)

and, consequently

𝜋(𝜆i|x) =
∫

∞

0
Gamma(𝜆i|ti + 𝜆,ni + 1∕2) 𝜋(𝜆|x) d𝜆. (19)

where Gamma(𝜆i|ti + 𝜆∕2,ni + 1∕2) denotes the Gamma distribution of the corresponding parameters.
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F I G U R E 1 Posterior distributions (left panel) and boxplot (right panel) of 𝜆i, i = 1, … , 4

T A B L E 4 Posterior summaries of 𝜆i, i = 1, … , 4

Post. mean Post. median 95%HPD interval

𝜆1 0.224 0.221 (0.150, 0.298)

𝜆2 0.233 0.216 (0.046, 0.448)

𝜆3 0.319 0.303 (0.100, 0.568)

𝜆4 0.482 0.453 (0.122, 0.883)

Thus, the posterior distribution for 𝜆i (i = 1, … , k) can be either computed by numerical integration or, better still,
by Markov chain Monte Carlo (MCMC) simulation. Given the hierarchical structure of the link distribution 𝜋(𝜆i|𝜆) a
MCMC implementation to find the posterior distributions is particularly easy to code. A R code was carried out using
JAGS (Just Another Gibbs Sampler) through the rjags package.23 See Supplementary Material where we provide codes
for posterior distributions and diagnostics of convergence of the corresponding chains generated.

Figure 1 displays the posterior densities of the four Poisson parameters obtained from the hierarchical linking distri-
butions. The densities overlap in a not negligible interval, which points out to the fact that the hypothesis of homogeneity
cannot be rejected. The values of the four parameters are small and close to each other (see Table 4) except perhaps the
corresponding parameter to the fourth sample 𝜆4, thus confirming the relatively high probability of marginal x4 obtained
before (0.243). Table 4 also contains 95% highest posterior density intervals (HPD intervals).

3.2 Example 2

With the purpose of comparing a battery of several test statistics for homogeneity in Poisson populations, Chiu and Wang11

revisited the dataset from Laird and Olivier24 corresponding to analyze the patient survival after heart valve replacement
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1166 GIRÓN et al.

T A B L E 5 Exposure in months and deaths

(ni, ti) Aortic Mitral

Young (< 55) x1 = (1259, 4) x2 = (2082, 1)

Old (≥ 55) x3 = (1417, 7) x4 = (1647, 9)

T A B L E 6 Posterior probabilities of the partitions in the motivating example

Configurations Parameters relationship Post. Prob.

Homogeneity

{{x1, x2, x3, x4}} 𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 0.037

Type 2–Homogeneity

{{x1, x2}, {x3, x4}} 𝜆1 = 𝜆2 ≠ 𝜆3 = 𝜆4 0.097

{{x1, x3}, {x2, x4}} 𝜆1 = 𝜆3 ≠ 𝜆2 = 𝜆4 0.004

{{x1, x4}, {x2, x3}} 𝜆1 = 𝜆4 ≠ 𝜆2 = 𝜆3 0.008

{{x1}, {x2, x3, x4}} 𝜆1 ≠ 𝜆2 = 𝜆3 = 𝜆4 0.003

{{x2}, {x1, x3, x4}} 𝜆2 ≠ 𝜆1 = 𝜆3 = 𝜆4 0.653

{{x3}, {x1, x2, x4}} 𝜆3 ≠ 𝜆1 = 𝜆2 = 𝜆4 0.006

{{x4}, {x1, x2, x3}} 𝜆4 ≠ 𝜆1 = 𝜆2 = 𝜆3 0.012

Type 3–Homogeneity

{{x1, x2}, {x3}, {x4}} 𝜆1 = 𝜆2 ≠ 𝜆3 ≠ 𝜆4 0.007

{{x1, x3}, {x2}, {x4}} 𝜆1 = 𝜆3 ≠ 𝜆2 ≠ 𝜆4 0.049

{{x1, x4}, {x2}, {x3}} 𝜆1 = 𝜆4 ≠ 𝜆2 ≠ 𝜆3 0.043

{{x1}, {x2, x3}, {x4}} 𝜆1 ≠ 𝜆2 = 𝜆3 ≠ 𝜆4 0.001

{{x1}, {x2, x4}, {x3}} 𝜆1 ≠ 𝜆2 = 𝜆4 ≠ 𝜆3 0.001

{{x1}, {x2}, {x3, x4}} 𝜆1 ≠ 𝜆2 ≠ 𝜆3 = 𝜆4 0.074

Heterogeneity

{{x1}, {x2}, {x3}, {x4}} 𝜆1 ≠ 𝜆2 ≠ 𝜆3 ≠ 𝜆4 0.005

Note: Bold indicates important values.

operations in a sample of 109 patients along a large number of months of observation. Table 5 shows the observed sample
for exposure in months (ni) and deaths (ti).

Here k = 4, and all counts are less than 10. Such data sample is considered in Chiu and Wang11 as a situation presenting
small k and small 𝜆, and the p-values of all the test considered (the commonly Pearson’s 𝜒2, likelihood ratio and score
tests and the U and V test by Potthoff and Whittinghill25), either asymptotic or their bootstrap counterpart, range from
0.00 to 0.045. Thus, the null hypothesis of homogeneity is rejected at the 0.05 level of significance, that is, the rates of
mortality are concerned by the age (young or old) and/or the valve (aortic or mitral).

However, the Bayesian homogeneity test provides a more detailed analysis of the data. Table 6 shows the results of
applying the Bayesian multiple test. As in the above example, a uniform prior distribution over the set of all configurations
is considered. Among all 15 possible configurations, we highlight both that accumulate the highest probability and the
configuration that represents the null hypothesis of homogeneity (accounting for more than 0.75 together).

The null hypothesis of homogeneity, that is, the homogeneity configuration in Table 6, has a small probability
Pr(H0|x) = 0.037. Hence, the null hypothesis of homogeneity is strongly rejected as well as the hypothesis of full het-
erogeneity which has also a very small probability 0.005. So, we conclude in the same sense that in Chiu and Wang.11

However, additional information can be extracted looking at the posterior probabilities in Table 6. Particularly noteworthy
is the partition {{x2}, {x1, x3, x4}} where, with probability 0.653, the hypothesis 𝜆2 ≠ 𝜆1 = 𝜆3 = 𝜆4 is true. This indicates
the presence of homogeneity in three of the samples considered, except for the second one. In fact, from Table 6, we
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F I G U R E 2 Posterior distributions (left panel) and boxplot (right panel) of 𝜆i, i = 1, … , 4

T A B L E 7 Posterior summaries of 𝜆i, i = 1, … , 4

Post. mean Post. median 95%HPD interval

𝜆1 0.0033 0.0030 (0.0006, 0.0065)

𝜆2 0.0005 0.0004 (0.00, 0.0016)

𝜆3 0.0050 0.0048 (0.0017, 0.0088)

𝜆4 0.0056 0.0054 (0.0022, 0.0092)

obtain that the marginal probabilities of each separate population are 0.084, 0.825, 0.062, and 0.074, respectively. That is,
population 2 is the most distinct one as can be seen from Figure 2.

Table 7 contains basic summaries of the posterior densities of the four populations considered. All the 95% Highest
Posterior Density intervals overlap each other except that from population 2, confirming the above comment.

3.3 Example 3

As in Example 3 in Nelson,15 we consider now the case of two clerks who are to be compared for mistakes made on
invoices. The observed data were x1 = (100, 12) and x2 = (300, 13). This example can be considered a simplified internal
control situation in an auditing context. In such situations, we can imagine that a large preponderance of zeros will be
present in the samples and only a few of the selected invoices will contain one or more errors. The 𝜒2 test gives a p-value
of 0.011 and the null hypothesis of homogeneity is rejected at 0.05 of significance.

For this case, where k = 2, only two clusters are possible in the partition set (homogeneity and heterogeneity, respec-
tively). Table 8 shows the posterior probabilities for each of these configurations. Although certainly the null hypothesis
has a lower posterior probability (and consequently, could be rejected) let us note that the posterior odds ratio between
heterogeneity and homogeneity is only 1.56, indicating a weak evidence in favor of heterogeneity according to Jeffreys’
scale. (“Not worth more than a bare mention”, Kass and Raftery26p. 791).
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1168 GIRÓN et al.

T A B L E 8 Posterior probabilities of the partitions in the Example 3

Configurations Parameters relationship Post. Prob.

Homogeneity

{{x1, x2}} 𝜆1 = 𝜆2 0.39

Heterogeneity

{{x1}, {x2}} 𝜆1 ≠ 𝜆2 0.61

4 FREQUENTIST EVALUATION OF THE BAYESIAN TEST

As the Bayes test does not depend on a simple statistic, its frequentist properties (those referred to Type I and Type II
errors of the test) have to be evaluated via simulation under the null and the different alternatives or configurations.
Type I errors for several number of samples k, different values of the sample size n (assuming that all samples have the
same size) and the common parameter 𝜆 can be computed by simulation. As an example we set k = 4, and consider four
different sample sizes n = 10, 25, 50,100, and four values of the parameter 𝜆 = 0.1, 1, 10, 50.

We first simulate k × 1000 samples from a Poisson distribution with parameter 𝜆 and sample size n, and we count the
number of times that the true model (in this case, the null hypothesis) has the highest posterior probability, and divide
this number by 1000. This provides the frequency of successes of the Bayesian test. Then, the complement to 1 of these
quantities is a MonteCarlo estimate of the Type I error. We consider two prior distributions for the configuration: the
uniform prior (if we have in mind clustering all configurations), and the prior that assign 1/2 to the null hypothesis and
a uniform distribution to the rest of configurations (if we are considering a testing hypothesis problem). The results are
given in Tables 9 and 10 respectively.

If we really are in a testing environment, where the null hypothesis has an important or relevant status, we can see
from Table 10 that except for 𝜆 = 0.1 and small sample sizes n = 10 and 20, all Type I errors are smaller than the usual
bound of 0.05. Further, for medium and large values of n and/or 𝜆 posterior probabilities tend to be similar and smaller
than the usual 𝛼–level = 0.05.

As we have commented above, Type II errors can also be calculated by simulation for any of the configurations. As
this number can be very large, to estimate Type II errors for all configurations is a too formidable task. Nevertheless,
we have observed in large scale simulations that when simulated from a certain configuration, and under the cluster
environment, the true model or configuration is the one with highest posterior probability and it is therefore chosen by
the Bayes procedure.

To end this section, we consider the simplest problem when k = 2 of testing H0 ∶ 𝜆1 = 𝜆2 vs H1 ∶ 𝜆1 ≠ 𝜆2. For this
problem, the two environments give the same prior probability to both hypotheses, 1∕2 each. Type II errors depend on the

T A B L E 9 Type I error for different choices of n and 𝜆 assuming the clustering context

𝝀 = 0.1 𝝀 = 1 𝝀 = 10 𝝀 = 50

n = 10 0.66 0.222 0.217 0.243

n = 25 0.325 0.131 0.15 0.192

n = 50 0.142 0.122 0.11 0.117

n = 100 0.097 0.065 0.091 0.079

T A B L E 10 Type I error for different choices of n and 𝜆 assuming the testing of the null hypothesis

𝝀 = 0.1 𝝀 = 1 𝝀 = 10 𝝀 = 50

n = 10 0.104 0.043 0.049 0.043

n = 25 0.079 0.033 0.024 0.043

n = 50 0.04 0.025 0.02 0.024

n = 100 0.017 0.015 0.009 0.017
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GIRÓN et al. 1169

T A B L E 11 Type I errors for different choices of n and 𝜆1 = 𝜆2 = 1, estimated via simulation

n = 10 n = 25 n = 50 n = 100

0.069 0.053 0.029 0.021

T A B L E 12 Type II errors for different choices of n and 𝜆1 = 1 and 𝜆2 = 2, 2.5, 3, 3.5, 4

(𝝀1, 𝝀2) (1, 2) (1, 2.5) (1, 3) (1, 3.5) (1, 4)

n = 10 0.48 0.20 0.06 0.04 0.01

n = 25 0.23 0.02 0.00 0.00 0.00

n = 50 0.04 0.00 0.00 0.00 0.00

n = 100 0.00 0.00 0.000 0.00 0.00

values of parameters 𝜆1 and 𝜆2. We present results for a fixed value of 𝜆1 and different values of 𝜆2 for different samples
sizes.

Type I error for different sample sizes are given in Table 11.
Table 12 shows a simulation of the Type II errors for testing H0 ∶ 𝜆1 = 𝜆2 vs H1 ∶ 𝜆1 ≠ 𝜆2 when 𝜆1 = 1, 𝜆2 = 2, 2.5, 3, 3.5

and 4 and several sample sizes n = 10, 25, 50,100.
This simulation shows the expected behavior of Type II errors. Type II error vanishes at sample size grows. On the

other hand, when the Kullback–Leibler distance between Poisson models increases the Type II error also vanishes.

5 EXTENSIONS

Example 3 above concludes with the rejection of the null hypothesis and accepting that clerk two is the more accurate,15

that is, Ha ∶ 𝜆1 > 𝜆2 is accepted conditional on the alternative hypothesis that 𝜆1 ≠ 𝜆2.
The Bayesian procedure also provides a simple solution to testing inequality hypotheses on the parameters. In many

occasions it would be interesting to test the null hypothesis H0 ∶ 𝜆1 > 𝜆2 > … > 𝜆k vs H1 ∶ the ordering of the parameters
is any other different permutation.

The Bayesian answer to this testing problem, under the hierarchical model, is the computation of the posterior proba-
bility of the null spaceΛ0 = {(𝜆1, … , 𝜆k) ∶ 𝜆1 > 𝜆2 > … > 𝜆k}which can be easily obtained from the hierarchical model,
and it turns out to be

Pr(H0|n, t) =
∫

∞

0 ∫Λ0

k∏

i=1
Gamma(𝜆i|ti + 𝜆∕2,ni + 1∕2) d𝜆i𝜋(𝜆|x) d𝜆, (20)

where n = (n1, … ,nk) and t = (t1, … , tk).For large values of k the numerical computation is better done by using MCMC
methods, which take advantage of the posterior conditional independence of the 𝜆i given 𝜆, that is, simulating first from
the posterior of the hyperparameter 𝜆, and then from Gamma distributions.

On the other hand, assuming that the data of the four groups were independent, the Bayesian answer to this test would
be the posterior probability of the null space Λ0 = {(𝜆1, … , 𝜆k) ∶ 𝜆1 > 𝜆2 > … > 𝜆k}, i.e.

Pr(H0|n, t) =
∫Λ0

k∏

i=1
Gamma(𝜆i|ti + 1∕2,ni) d𝜆i, (21)

where Gamma(𝜆i|ti + 1∕2,ni) denotes the posterior densities of 𝜆i obtained using the reference Jeffreys prior. Same as in
the hierarchical setting, this posterior probability has to be evaluated by numerical integration or MonteCarlo simulation.
The MCMC computations are, in this case, easier due to the independence of the posterior distributions of the 𝜆i.

For the data of Example 3 in Section 3.3, k = 2 the posterior probability of 𝜆1 > 𝜆2, given that 𝜆1 ≠ 𝜆2, was roughly the
same, 0.993, for both formulas.
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1170 GIRÓN et al.

6 CONCLUSIONS

This paper provides a simple Bayesian solution to the comparison of the Poisson populations problem. A hierarchical
model for testing homogeneity of the means is considered to obtain the Bayes factor for comparing each alternative model
with the baseline homogeneity model. Bayesian practitioners base their decisions on the posterior probabilities of all
models involved without resorting to sometimes unmeaning p-values as in the frequentist approach. In other words, fre-
quentist methods can be neither used for quantifying evidence for the null hypothesis of homogeneity nor for testing
multiple hypotheses simultaneously. The proposed Bayesian approach gives a procedure without these constraints. Fur-
thermore, in contrast with the frequentist approach, no ad–hoc restrictions are needed for particular situations such as a
small number of samples k to test their homogeneity, small values of some of the estimates of parameters 𝜆i, sparse data,
and/or small and different sample sizes. The proposed Bayesian procedure is valid under all these situations.

Nevertheless, the prior distribution on the partitions models deserve some attention. In common practical situations,
where the number of populations to be compared is small with respect to the samples sizes ni and no prior information
about the models is available, a uniform prior over the set of all configurations k seems a reasonable prior distribution.
On the other hand, Negrín et al.27 found a high sensitivity to the prior on the partitions when we focus on estimation and
clustering in binary data for meta–analysis.

The proposed Bayesian procedure implies obtaining posterior probabilities for all posible partitions; however, compu-
tational difficulties can be arise when the number of Poisson populations to be compared is moderately large (k > 15) due
to time required for computation. In that case, an efficient stochastic algorithm to search a set of good clusters models is
required.18
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