Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/118897
Título: Development of an Artificial Neural Network for the Detection of Supporting Hindlimb Lameness: A Pilot Study in Working Dogs
Autores/as: Figueirinhas Paiva, Pedro 
Sánchez, Adrián
Rodríguez Lozano, David O. 
Vilar Guereño, José Manuel 
Rodriguez-Altónaga, José
Gonzalo-Orden, José Manuel
Quesada-Arencibia, Alexis 
Clasificación UNESCO: 310904 Medicina interna
321315 Traumatología
Palabras clave: Artificial neural network
Web app
Lameness
Dog
Inertial sensor
Fecha de publicación: 2022
Publicación seriada: Animals 
Resumen: Subjective lameness assessment has been a controversial subject given the lack of agreement between observers; this has prompted the development of kinetic and kinematic devices in order to obtain an objective evaluation of locomotor system in dogs. After proper training, neural networks are potentially capable of making a non-human diagnosis of canine lameness. The purpose of this study was to investigate whether artificial neural networks could be used to determine canine hindlimb lameness by computational means only. The outcome of this study could potentially assess the efficacy of certain treatments against diseases that cause lameness. With this aim, input data were obtained from an inertial sensor positioned on the rump. Data from dogs with unilateral hindlimb lameness and sound dogs were used to obtain differences between both groups at walk. The artificial neural network, after necessary adjustments, was integrated into a web management tool, and the preliminary results discriminating between lame and sound dogs are promising. The analysis of spatial data with artificial neural networks was summarized and developed into a web app that has proven to be a useful tool to discriminate between sound and lame dogs. Additionally, this environment allows veterinary clinicians to adequately follow the treatment of lame canine patients.
URI: http://hdl.handle.net/10553/118897
ISSN: 2076-2615
DOI: 10.3390/ani12141755
Fuente: Animals [EISSN 2076-2615], v. 12 (14), 1755, (Julio 2022)
Colección:Artículos
Adobe PDF (5,83 MB)
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Visitas

67
actualizado el 11-may-2024

Descargas

59
actualizado el 11-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.