Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/118897
Campo DC Valoridioma
dc.contributor.authorFigueirinhas Paiva, Pedroen_US
dc.contributor.authorSánchez, Adriánen_US
dc.contributor.authorRodríguez Lozano, David O.en_US
dc.contributor.authorVilar Guereño, José Manuelen_US
dc.contributor.authorRodriguez-Altónaga, Joséen_US
dc.contributor.authorGonzalo-Orden, José Manuelen_US
dc.contributor.authorQuesada-Arencibia, Alexisen_US
dc.date.accessioned2022-10-18T06:46:06Z-
dc.date.available2022-10-18T06:46:06Z-
dc.date.issued2022en_US
dc.identifier.issn2076-2615en_US
dc.identifier.urihttp://hdl.handle.net/10553/118897-
dc.description.abstractSubjective lameness assessment has been a controversial subject given the lack of agreement between observers; this has prompted the development of kinetic and kinematic devices in order to obtain an objective evaluation of locomotor system in dogs. After proper training, neural networks are potentially capable of making a non-human diagnosis of canine lameness. The purpose of this study was to investigate whether artificial neural networks could be used to determine canine hindlimb lameness by computational means only. The outcome of this study could potentially assess the efficacy of certain treatments against diseases that cause lameness. With this aim, input data were obtained from an inertial sensor positioned on the rump. Data from dogs with unilateral hindlimb lameness and sound dogs were used to obtain differences between both groups at walk. The artificial neural network, after necessary adjustments, was integrated into a web management tool, and the preliminary results discriminating between lame and sound dogs are promising. The analysis of spatial data with artificial neural networks was summarized and developed into a web app that has proven to be a useful tool to discriminate between sound and lame dogs. Additionally, this environment allows veterinary clinicians to adequately follow the treatment of lame canine patients.en_US
dc.languageengen_US
dc.relation.ispartofAnimalsen_US
dc.sourceAnimals [EISSN 2076-2615], v. 12 (14), 1755, (Julio 2022)en_US
dc.subject310904 Medicina internaen_US
dc.subject321315 Traumatologíaen_US
dc.subject.otherArtificial neural networken_US
dc.subject.otherWeb appen_US
dc.subject.otherLamenessen_US
dc.subject.otherDogen_US
dc.subject.otherInertial sensoren_US
dc.titleDevelopment of an Artificial Neural Network for the Detection of Supporting Hindlimb Lameness: A Pilot Study in Working Dogsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.3390/ani12141755en_US
dc.identifier.scopus2-s2.0-85133680653-
dc.identifier.isiWOS:000833086800001-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue14-
dc.relation.volume12en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.description.notasThis article belongs to the Special Issue Sports Medicine and Animal Rehabilitationen_US
dc.description.numberofpages14en_US
dc.utils.revisionen_US
dc.date.coverdateJulio 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-VETen_US
dc.description.sjr0,684
dc.description.jcr3,0
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,5
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptDepartamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos-
crisitem.author.deptGIR IUIBS: Medicina Veterinaria e Investigación Terapéutica-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-4040-1266-
crisitem.author.orcid0000-0002-2060-2274-
crisitem.author.orcid0000-0002-8313-5124-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameFigueirinhas Paiva, Pedro-
crisitem.author.fullNameRodríguez Lozano, David Oliverio-
crisitem.author.fullNameVilar Guereño, José Manuel-
crisitem.author.fullNameQuesada Arencibia, Francisco Alexis-
Colección:Artículos
Adobe PDF (5,83 MB)
Vista resumida

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Visitas

67
actualizado el 11-may-2024

Descargas

59
actualizado el 11-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.