Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/11754
Título: | Reliable estimation of dense optical flow fields with large displacements | Autores/as: | Alvarez, Luis Weickert, Joachim Sánchez, Javier |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes 120601 Construcción de algoritmos 120602 Ecuaciones diferenciales 120326 Simulación |
Palabras clave: | Image sequences Optical flow Diferential methods Anisotropic difusion Linear scale- space, et al. |
Fecha de publicación: | 2000 | Publicación seriada: | International Journal of Computer Vision | Resumen: | In this paper we show that a classic optical flow technique by Nagel and Enkelmann can be regarded as an early anisotropic diffusion method with a diffusion tensor. We introduce three improvements into the model formulation that avoid inconsistencies caused by centering the brightness term and the smoothness term in different images use a linear scale-space focusing strategy from coarse to fine scales for avoiding convergence to physically irrelevant local minima, and create an energy functional that is invariant under linear brightness changes. Applying a gradient descent method to the resulting energy functional leads to a system of diffusion-reaction equations. We prove that this system has a unique solution under realistic assumptions on the initial data, and we present an efficient linear implicit numerical scheme in detail. Our method creates flow fields with 100% density over the entire image domain, it is robust under a large range of parameter variations, and it can recover displacement fields that are far beyond the typical one-pixel limits which are characteristic for many differential methods for determining optical flow. We show that it performs better than the classic optical flow methods with 100% density that are evaluated by Barron et al. (1994). Our software is available from the Internet. | URI: | http://hdl.handle.net/10553/11754 | ISSN: | 0920-5691 | DOI: | 10.1023/A:1008170101536 | Fuente: | International Journal of Computer Vision [ISSN 0920-5691], v. 39, p. 41-56 | Derechos: | by-nc-nd |
Colección: | Artículos |
Citas SCOPUSTM
258
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
205
actualizado el 17-nov-2024
Visitas
112
actualizado el 24-ago-2024
Descargas
736
actualizado el 24-ago-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.