Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/11754
Título: Reliable estimation of dense optical flow fields with large displacements
Autores/as: Alvarez, Luis 
Weickert, Joachim
Sánchez, Javier 
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
Palabras clave: Image sequences
Optical flow
Diferential methods
Anisotropic difusion
Linear scale- space, et al.
Fecha de publicación: 2000
Publicación seriada: International Journal of Computer Vision 
Resumen: In this paper we show that a classic optical flow technique by Nagel and Enkelmann can be regarded as an early anisotropic diffusion method with a diffusion tensor. We introduce three improvements into the model formulation that avoid inconsistencies caused by centering the brightness term and the smoothness term in different images use a linear scale-space focusing strategy from coarse to fine scales for avoiding convergence to physically irrelevant local minima, and create an energy functional that is invariant under linear brightness changes.  Applying a gradient descent method to the resulting energy functional leads to a system of diffusion-reaction equations. We prove that this system has a unique solution under realistic assumptions on the initial data, and we present an efficient linear implicit numerical scheme in detail. Our method creates flow fields with 100% density over the entire image domain, it is robust under a large range of parameter variations, and it can recover displacement fields that are far beyond the typical one-pixel limits which are characteristic for many differential methods for determining optical flow. We show that it performs better than the classic optical flow methods with 100%  density that are evaluated by Barron et al. (1994). Our software is available from the Internet.
URI: http://hdl.handle.net/10553/11754
ISSN: 0920-5691
DOI: 10.1023/A:1008170101536
Fuente: International Journal of Computer Vision [ISSN 0920-5691], v. 39, p. 41-56
Derechos: by-nc-nd
Colección:Artículos
miniatura
Adobe PDF (451,67 kB)
Vista completa

Citas SCOPUSTM   

258
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

205
actualizado el 17-nov-2024

Visitas

112
actualizado el 24-ago-2024

Descargas

736
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.