Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/11754
Campo DC Valoridioma
dc.contributor.authorAlvarez, Luisen_US
dc.contributor.authorWeickert, Joachimen_US
dc.contributor.authorSánchez, Javieren_US
dc.contributor.otherAlvarez, Luis-
dc.contributor.otherSanchez, Javier-
dc.date.accessioned2014-05-23T08:10:26Z
dc.date.accessioned2018-03-15T14:34:41Z-
dc.date.available2014-05-23T08:10:26Z
dc.date.available2018-03-15T14:34:41Z-
dc.date.issued2000en_US
dc.identifier.issn0920-5691en_US
dc.identifier.urihttp://hdl.handle.net/10553/11754-
dc.description.abstractIn this paper we show that a classic optical flow technique by Nagel and Enkelmann can be regarded as an early anisotropic diffusion method with a diffusion tensor. We introduce three improvements into the model formulation that avoid inconsistencies caused by centering the brightness term and the smoothness term in different images use a linear scale-space focusing strategy from coarse to fine scales for avoiding convergence to physically irrelevant local minima, and create an energy functional that is invariant under linear brightness changes.  Applying a gradient descent method to the resulting energy functional leads to a system of diffusion-reaction equations. We prove that this system has a unique solution under realistic assumptions on the initial data, and we present an efficient linear implicit numerical scheme in detail. Our method creates flow fields with 100% density over the entire image domain, it is robust under a large range of parameter variations, and it can recover displacement fields that are far beyond the typical one-pixel limits which are characteristic for many differential methods for determining optical flow. We show that it performs better than the classic optical flow methods with 100%  density that are evaluated by Barron et al. (1994). Our software is available from the Internet.en_US
dc.languageengen_US
dc.relation.ispartofInternational Journal of Computer Visionen_US
dc.rightsby-nc-ndes
dc.sourceInternational Journal of Computer Vision [ISSN 0920-5691], v. 39, p. 41-56en_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject120602 Ecuaciones diferencialesen_US
dc.subject120326 Simulaciónen_US
dc.subject.otherImage sequencesen_US
dc.subject.otherOptical flowen_US
dc.subject.otherDiferential methodsen_US
dc.subject.otherAnisotropic difusionen_US
dc.subject.otherLinear scale- spaceen_US
dc.subject.otherRegularizationen_US
dc.subject.otherFinite diference methodsen_US
dc.subject.otherPerformance evaluationen_US
dc.titleReliable estimation of dense optical flow fields with large displacementsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1023/A:1008170101536
dc.identifier.scopus0034245682-
dc.identifier.isi000089241300003-
dcterms.isPartOfInternational Journal Of Computer Vision
dcterms.sourceInternational Journal Of Computer Vision[ISSN 0920-5691],v. 39 (1), p. 41-56
dc.contributor.authorscopusid55640159000-
dc.contributor.authorscopusid7004916957-
dc.contributor.authorscopusid22735426600-
dc.identifier.absysnet538085-
dc.identifier.crisid1413;-;2648
dc.description.lastpage56-
dc.description.firstpage41-
dc.relation.volume39-
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.type2Artículoen_US
dc.identifier.wosWOS:000089241300003-
dc.contributor.daisngid478566-
dc.contributor.daisngid100055-
dc.contributor.daisngid1335721-
dc.identifier.investigatorRIDA-9190-2009-
dc.identifier.investigatorRIDA-7009-2011-
dc.identifier.external1413;-;2648-
dc.identifier.external1413;-;2648-
dc.identifier.externalWOS:000089241300003-
dc.identifier.external1413;-;2648-
dc.identifier.externalWOS:000089241300003-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Alvarez, L
dc.contributor.wosstandardWOS:Weickert, J
dc.contributor.wosstandardWOS:Sanchez, J
dc.date.coverdateAgosto 2000
dc.identifier.ulpgces
dc.description.jcr1,835
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Modelos Matemáticos-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-6953-9587-
crisitem.author.orcid0000-0001-8514-4350-
crisitem.author.parentorgDepartamento de Informática y Sistemas-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameÁlvarez León, Luis Miguel-
crisitem.author.fullNameSánchez Pérez, Javier-
Colección:Artículos
miniatura
Adobe PDF (451,67 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.