Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/117252
Título: Joint Image and 3D Shape Part Representation in Large Collections for Object Blending
Autores/as: Peñate Sánchez, Adrián 
Agapito, Lourdes
Clasificación UNESCO: 3304 Tecnología de los ordenadores
Palabras clave: Shape
Three-dimensional displays
Solid modeling
Legged locomotion
Image segmentation, et al.
Fecha de publicación: 2020
Publicación seriada: IEEE ACCESS
Resumen: We propose a new approach to perform object shape retrieval from images, it can handle the shape of the part of the object and combine parts from different sources to find a different 3D shape. Our method creates a common representation for images and 3D models that enables mixing elements from both kinds of inputs. Our approach automatically extracts the desired part and its 3D shape from each source without the need of annotations. There are many applications to combining parts from images and 3D models, for example, performing smart online catalogue searches by selecting the parts that we are looking for from images or 3D models and retrieve a 3D shape that has the desired arrangement of parts. Our approach is capable of obtaining the shape of the parts of an object from an image in the wild, independently of the pose of the object and without the need of annotations of any kind.
URI: http://hdl.handle.net/10553/117252
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2020.2975106
Colección:Artículos
Adobe PDF (3,97 MB)
Vista completa

Citas SCOPUSTM   

2
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 17-nov-2024

Visitas

61
actualizado el 28-sep-2024

Descargas

21
actualizado el 28-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.