Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/117252
Campo DC Valoridioma
dc.contributor.authorPeñate Sánchez, Adriánen_US
dc.contributor.authorAgapito, Lourdesen_US
dc.date.accessioned2022-07-21T09:03:29Z-
dc.date.available2022-07-21T09:03:29Z-
dc.date.issued2020en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://hdl.handle.net/10553/117252-
dc.description.abstractWe propose a new approach to perform object shape retrieval from images, it can handle the shape of the part of the object and combine parts from different sources to find a different 3D shape. Our method creates a common representation for images and 3D models that enables mixing elements from both kinds of inputs. Our approach automatically extracts the desired part and its 3D shape from each source without the need of annotations. There are many applications to combining parts from images and 3D models, for example, performing smart online catalogue searches by selecting the parts that we are looking for from images or 3D models and retrieve a 3D shape that has the desired arrangement of parts. Our approach is capable of obtaining the shape of the parts of an object from an image in the wild, independently of the pose of the object and without the need of annotations of any kind.en_US
dc.languageengen_US
dc.relation.ispartofIEEE ACCESSen_US
dc.subject3304 Tecnología de los ordenadoresen_US
dc.subject.otherShapeen_US
dc.subject.otherThree-dimensional displaysen_US
dc.subject.otherSolid modelingen_US
dc.subject.otherLegged locomotionen_US
dc.subject.otherImage segmentationen_US
dc.subject.otherSemanticsen_US
dc.subject.otherComputer visionen_US
dc.subject.otherShape blendingen_US
dc.subject.otherjoint image and shape embeddingen_US
dc.subject.other3D shapeen_US
dc.subject.othercomputer visionen_US
dc.subject.othercomputer graphicsen_US
dc.titleJoint Image and 3D Shape Part Representation in Large Collections for Object Blendingen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2020.2975106en_US
dc.identifier.scopus2-s2.0-85080863719-
dc.identifier.isiWOS:000567614200009-
dc.contributor.orcid0000-0003-2876-3301-
dc.contributor.orcid#NODATA#-
dc.investigacionIngeniería y Arquitecturaen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2876-3301-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNamePeñate Sánchez, Adrián-
Colección:Artículos
Adobe PDF (3,97 MB)
Vista resumida

Citas SCOPUSTM   

2
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 24-nov-2024

Visitas

61
actualizado el 28-sep-2024

Descargas

21
actualizado el 28-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.