Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/117252
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Peñate Sánchez, Adrián | en_US |
dc.contributor.author | Agapito, Lourdes | en_US |
dc.date.accessioned | 2022-07-21T09:03:29Z | - |
dc.date.available | 2022-07-21T09:03:29Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.issn | 2169-3536 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/117252 | - |
dc.description.abstract | We propose a new approach to perform object shape retrieval from images, it can handle the shape of the part of the object and combine parts from different sources to find a different 3D shape. Our method creates a common representation for images and 3D models that enables mixing elements from both kinds of inputs. Our approach automatically extracts the desired part and its 3D shape from each source without the need of annotations. There are many applications to combining parts from images and 3D models, for example, performing smart online catalogue searches by selecting the parts that we are looking for from images or 3D models and retrieve a 3D shape that has the desired arrangement of parts. Our approach is capable of obtaining the shape of the parts of an object from an image in the wild, independently of the pose of the object and without the need of annotations of any kind. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | IEEE ACCESS | en_US |
dc.subject | 3304 Tecnología de los ordenadores | en_US |
dc.subject.other | Shape | en_US |
dc.subject.other | Three-dimensional displays | en_US |
dc.subject.other | Solid modeling | en_US |
dc.subject.other | Legged locomotion | en_US |
dc.subject.other | Image segmentation | en_US |
dc.subject.other | Semantics | en_US |
dc.subject.other | Computer vision | en_US |
dc.subject.other | Shape blending | en_US |
dc.subject.other | joint image and shape embedding | en_US |
dc.subject.other | 3D shape | en_US |
dc.subject.other | computer vision | en_US |
dc.subject.other | computer graphics | en_US |
dc.title | Joint Image and 3D Shape Part Representation in Large Collections for Object Blending | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/ACCESS.2020.2975106 | en_US |
dc.identifier.scopus | 2-s2.0-85080863719 | - |
dc.identifier.isi | WOS:000567614200009 | - |
dc.contributor.orcid | 0000-0003-2876-3301 | - |
dc.contributor.orcid | #NODATA# | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2876-3301 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Peñate Sánchez, Adrián | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
2
checked on Dec 8, 2024
WEB OF SCIENCETM
Citations
1
checked on Dec 8, 2024
Page view(s)
61
checked on Sep 28, 2024
Download(s)
21
checked on Sep 28, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.