Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/116672
Título: Optimal design and analysis of a combined freshwater-power generation system based on integrated solid oxide fuel cell-gas turbine-organic Rankine cycle-multi effect distillation system
Autores/as: Manesh, Mohammad Hasan Khoshgoftar
Ghorbani, Shabnam
Blanco Marigorta, Ana María 
Clasificación UNESCO: 330801 Control de la contaminación atmosférica
330806 Regeneración del agua
331330 Turbinas
Palabras clave: Exergoenvironmental Analysis
Environmental-Analyses
Economic-Analysis
Desalination
Exergy, et al.
Fecha de publicación: 2022
Publicación seriada: Applied Thermal Engineering 
Resumen: Gas turbine output has a very good capability for heat recovery and increases production capacity by heat recovery steam generator and heat recovery vapor generator. Also, gas turbines have good potential for coupling with a solid oxide fuel cell to increase power generation. The present research proposes and evaluates a novel combination of a solid oxide fuel cell and gas turbine system with an organic Rankine cycle and a multi-effect thermal desalination system.& nbsp;Conventional and advanced exergetic, exergoenvironmental and exergoeconomic analyses are performed to better understand the proposed system in view of performance, economic, and environmental impacts. To find the optimal design values, minimize the total exergetic environmental impacts and total exergetic cost rate, and maximize exergetic efficiency, as objective functions, multi-target optimization using the multi-target water cycle algorithm and the multi-target genetic algorithm is used. The analyses are conducted using MATLAB software. Results determine the optimal hybrid system could produce 5000 m(3)/day of freshwater, with five effects on the MED-TVC. The energy and exergy efficiencies of the suggested hybrid system reached 47.85% and 41.94%, respectively, an increase of 11.6% and 3.6% compared to the coupled gas turbine system and solid oxide fuel cell. Furthermore, by applying the Multi-objective Genetic Algorithm and Multi-objective Water Cycle Algorithm optimization, the overall efficiency of cogeneration is increased by 28% and 27.5%. The total exergetic cost is reduced by 23.12% and 22.46%, and the total exergetic environmental impact is reduced by 20.15% and 19.65%, respectively.
URI: http://hdl.handle.net/10553/116672
ISSN: 1359-4311
DOI: 10.1016/j.applthermaleng.2022.118438
Fuente: Applied Thermal Engineering[ISSN 1359-4311],v. 211, (Julio 2022)
Colección:Artículos
Vista completa

Citas de WEB OF SCIENCETM
Citations

29
actualizado el 15-dic-2024

Visitas

78
actualizado el 07-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.