Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/116672
Campo DC Valoridioma
dc.contributor.authorManesh, Mohammad Hasan Khoshgoftaren_US
dc.contributor.authorGhorbani, Shabnamen_US
dc.contributor.authorBlanco Marigorta, Ana Maríaen_US
dc.date.accessioned2022-07-11T09:49:05Z-
dc.date.available2022-07-11T09:49:05Z-
dc.date.issued2022en_US
dc.identifier.issn1359-4311en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/116672-
dc.description.abstractGas turbine output has a very good capability for heat recovery and increases production capacity by heat recovery steam generator and heat recovery vapor generator. Also, gas turbines have good potential for coupling with a solid oxide fuel cell to increase power generation. The present research proposes and evaluates a novel combination of a solid oxide fuel cell and gas turbine system with an organic Rankine cycle and a multi-effect thermal desalination system.& nbsp;Conventional and advanced exergetic, exergoenvironmental and exergoeconomic analyses are performed to better understand the proposed system in view of performance, economic, and environmental impacts. To find the optimal design values, minimize the total exergetic environmental impacts and total exergetic cost rate, and maximize exergetic efficiency, as objective functions, multi-target optimization using the multi-target water cycle algorithm and the multi-target genetic algorithm is used. The analyses are conducted using MATLAB software. Results determine the optimal hybrid system could produce 5000 m(3)/day of freshwater, with five effects on the MED-TVC. The energy and exergy efficiencies of the suggested hybrid system reached 47.85% and 41.94%, respectively, an increase of 11.6% and 3.6% compared to the coupled gas turbine system and solid oxide fuel cell. Furthermore, by applying the Multi-objective Genetic Algorithm and Multi-objective Water Cycle Algorithm optimization, the overall efficiency of cogeneration is increased by 28% and 27.5%. The total exergetic cost is reduced by 23.12% and 22.46%, and the total exergetic environmental impact is reduced by 20.15% and 19.65%, respectively.en_US
dc.languageengen_US
dc.relation.ispartofApplied Thermal Engineeringen_US
dc.sourceApplied Thermal Engineering[ISSN 1359-4311],v. 211, (Julio 2022)en_US
dc.subject330801 Control de la contaminación atmosféricaen_US
dc.subject330806 Regeneración del aguaen_US
dc.subject331330 Turbinasen_US
dc.subject.otherExergoenvironmental Analysisen_US
dc.subject.otherEnvironmental-Analysesen_US
dc.subject.otherEconomic-Analysisen_US
dc.subject.otherDesalinationen_US
dc.subject.otherExergyen_US
dc.subject.otherEnergyen_US
dc.subject.otherOptimizationen_US
dc.subject.otherSofcen_US
dc.subject.otherSimulationen_US
dc.subject.otherHydrogenen_US
dc.subject.otherExergyen_US
dc.subject.otherGas Turbineen_US
dc.subject.otherSolid Oxide Fuel Cellen_US
dc.subject.otherExergoenvironmentalen_US
dc.subject.otherExergoeconomicen_US
dc.subject.otherAdvanced Analysisen_US
dc.titleOptimal design and analysis of a combined freshwater-power generation system based on integrated solid oxide fuel cell-gas turbine-organic Rankine cycle-multi effect distillation systemen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.applthermaleng.2022.118438en_US
dc.identifier.isi000796193900002-
dc.identifier.eissn1873-5606-
dc.relation.volume211en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid1451798-
dc.contributor.daisngid51507258-
dc.contributor.daisngid42918607-
dc.description.numberofpages19en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Manesh, MHK-
dc.contributor.wosstandardWOS:Ghorbani, S-
dc.contributor.wosstandardWOS:Blanco-Marigorta, AM-
dc.date.coverdateJulio 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr1,559
dc.description.jcr6,4
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,9
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.orcid0000-0003-4635-7235-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameBlanco Marigorta, Ana María-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.