Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/116672
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Manesh, Mohammad Hasan Khoshgoftar | en_US |
dc.contributor.author | Ghorbani, Shabnam | en_US |
dc.contributor.author | Blanco Marigorta, Ana María | en_US |
dc.date.accessioned | 2022-07-11T09:49:05Z | - |
dc.date.available | 2022-07-11T09:49:05Z | - |
dc.date.issued | 2022 | en_US |
dc.identifier.issn | 1359-4311 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/116672 | - |
dc.description.abstract | Gas turbine output has a very good capability for heat recovery and increases production capacity by heat recovery steam generator and heat recovery vapor generator. Also, gas turbines have good potential for coupling with a solid oxide fuel cell to increase power generation. The present research proposes and evaluates a novel combination of a solid oxide fuel cell and gas turbine system with an organic Rankine cycle and a multi-effect thermal desalination system.& nbsp;Conventional and advanced exergetic, exergoenvironmental and exergoeconomic analyses are performed to better understand the proposed system in view of performance, economic, and environmental impacts. To find the optimal design values, minimize the total exergetic environmental impacts and total exergetic cost rate, and maximize exergetic efficiency, as objective functions, multi-target optimization using the multi-target water cycle algorithm and the multi-target genetic algorithm is used. The analyses are conducted using MATLAB software. Results determine the optimal hybrid system could produce 5000 m(3)/day of freshwater, with five effects on the MED-TVC. The energy and exergy efficiencies of the suggested hybrid system reached 47.85% and 41.94%, respectively, an increase of 11.6% and 3.6% compared to the coupled gas turbine system and solid oxide fuel cell. Furthermore, by applying the Multi-objective Genetic Algorithm and Multi-objective Water Cycle Algorithm optimization, the overall efficiency of cogeneration is increased by 28% and 27.5%. The total exergetic cost is reduced by 23.12% and 22.46%, and the total exergetic environmental impact is reduced by 20.15% and 19.65%, respectively. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Applied Thermal Engineering | en_US |
dc.source | Applied Thermal Engineering[ISSN 1359-4311],v. 211, (Julio 2022) | en_US |
dc.subject | 330801 Control de la contaminación atmosférica | en_US |
dc.subject | 330806 Regeneración del agua | en_US |
dc.subject | 331330 Turbinas | en_US |
dc.subject.other | Exergoenvironmental Analysis | en_US |
dc.subject.other | Environmental-Analyses | en_US |
dc.subject.other | Economic-Analysis | en_US |
dc.subject.other | Desalination | en_US |
dc.subject.other | Exergy | en_US |
dc.subject.other | Energy | en_US |
dc.subject.other | Optimization | en_US |
dc.subject.other | Sofc | en_US |
dc.subject.other | Simulation | en_US |
dc.subject.other | Hydrogen | en_US |
dc.subject.other | Exergy | en_US |
dc.subject.other | Gas Turbine | en_US |
dc.subject.other | Solid Oxide Fuel Cell | en_US |
dc.subject.other | Exergoenvironmental | en_US |
dc.subject.other | Exergoeconomic | en_US |
dc.subject.other | Advanced Analysis | en_US |
dc.title | Optimal design and analysis of a combined freshwater-power generation system based on integrated solid oxide fuel cell-gas turbine-organic Rankine cycle-multi effect distillation system | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.applthermaleng.2022.118438 | en_US |
dc.identifier.isi | 000796193900002 | - |
dc.identifier.eissn | 1873-5606 | - |
dc.relation.volume | 211 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 1451798 | - |
dc.contributor.daisngid | 51507258 | - |
dc.contributor.daisngid | 42918607 | - |
dc.description.numberofpages | 19 | en_US |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Manesh, MHK | - |
dc.contributor.wosstandard | WOS:Ghorbani, S | - |
dc.contributor.wosstandard | WOS:Blanco-Marigorta, AM | - |
dc.date.coverdate | Julio 2022 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
dc.description.sjr | 1,559 | |
dc.description.jcr | 6,4 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 10,9 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR Group for the Research on Renewable Energy Systems | - |
crisitem.author.dept | Departamento de Ingeniería de Procesos | - |
crisitem.author.orcid | 0000-0003-4635-7235 | - |
crisitem.author.parentorg | Departamento de Ingeniería Mecánica | - |
crisitem.author.fullName | Blanco Marigorta, Ana María | - |
Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
27
actualizado el 17-nov-2024
Visitas
78
actualizado el 07-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.