Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114748
Título: FPGA implementation of neurocomputational models: comparison between standard back-propagation and C-Mantec constructive algorithm
Autores/as: Ortega Zamorano, Francisco 
Jerez, José M.
Juárez, Gustavo E.
Franco, Leonardo
Clasificación UNESCO: 1203 Ciencia de los ordenadores
Palabras clave: Constructive neural networks
FPGA
Hardware implementation
Fecha de publicación: 2017
Publicación seriada: Neural Processing Letters 
Resumen: Recent advances in FPGA technology have permitted the implementation of neurocomputational models, making them an interesting alternative to standard PCs in order to speed up the computations involved taking advantage of the intrinsic FPGA parallelism. In this work, we analyse and compare the FPGA implementation of two neural network learning algorithms: the standard and well known Back-Propagation algorithm and C-Mantec, a constructive neural network algorithm that generates compact one hidden layer architectures with good predictive capabilities. One of the main differences between both algorithms is the fact that while Back-Propagation needs a predefined architecture, C-Mantec constructs its network while learning the input patterns. Several aspects of the FPGA implementation of both algorithms are analyzed, focusing in features like logic and memory resources needed, transfer function implementation, computation time, etc. The advantages and disadvantages of both methods in relationship to their hardware implementations are discussed.
URI: http://hdl.handle.net/10553/114748
ISSN: 1370-4621
DOI: 10.1007/s11063-017-9655-x
Fuente: Neural Processing Letters [ISSN 1370-4621], n. 46, p. 899-914
Colección:Artículos
Vista completa

Citas SCOPUSTM   

6
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

5
actualizado el 17-nov-2024

Visitas

76
actualizado el 15-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.