Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/114748
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Ortega Zamorano, Francisco | en_US |
dc.contributor.author | Jerez, José M. | en_US |
dc.contributor.author | Juárez, Gustavo E. | en_US |
dc.contributor.author | Franco, Leonardo | en_US |
dc.date.accessioned | 2022-05-16T19:30:05Z | - |
dc.date.available | 2022-05-16T19:30:05Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.issn | 1370-4621 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/114748 | - |
dc.description.abstract | Recent advances in FPGA technology have permitted the implementation of neurocomputational models, making them an interesting alternative to standard PCs in order to speed up the computations involved taking advantage of the intrinsic FPGA parallelism. In this work, we analyse and compare the FPGA implementation of two neural network learning algorithms: the standard and well known Back-Propagation algorithm and C-Mantec, a constructive neural network algorithm that generates compact one hidden layer architectures with good predictive capabilities. One of the main differences between both algorithms is the fact that while Back-Propagation needs a predefined architecture, C-Mantec constructs its network while learning the input patterns. Several aspects of the FPGA implementation of both algorithms are analyzed, focusing in features like logic and memory resources needed, transfer function implementation, computation time, etc. The advantages and disadvantages of both methods in relationship to their hardware implementations are discussed. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Neural Processing Letters | en_US |
dc.source | Neural Processing Letters [ISSN 1370-4621], n. 46, p. 899-914 | en_US |
dc.subject | 1203 Ciencia de los ordenadores | en_US |
dc.subject.other | Constructive neural networks | en_US |
dc.subject.other | FPGA | en_US |
dc.subject.other | Hardware implementation | en_US |
dc.title | FPGA implementation of neurocomputational models: comparison between standard back-propagation and C-Mantec constructive algorithm | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.identifier.doi | 10.1007/s11063-017-9655-x | en_US |
dc.identifier.scopus | 2-s2.0-85020518667 | - |
dc.identifier.isi | WOS:000416161200010 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | 0000-0003-0012-5914 | - |
dc.description.lastpage | 914 | en_US |
dc.identifier.issue | 3 | - |
dc.description.firstpage | 899 | en_US |
dc.relation.volume | 46 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | No | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | 0,51 | |
dc.description.jcr | 1,787 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.orcid | 0000-0002-4397-2905 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Ortega Zamorano,Francisco | - |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.