Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/114748
DC FieldValueLanguage
dc.contributor.authorOrtega Zamorano, Franciscoen_US
dc.contributor.authorJerez, José M.en_US
dc.contributor.authorJuárez, Gustavo E.en_US
dc.contributor.authorFranco, Leonardoen_US
dc.date.accessioned2022-05-16T19:30:05Z-
dc.date.available2022-05-16T19:30:05Z-
dc.date.issued2017en_US
dc.identifier.issn1370-4621en_US
dc.identifier.urihttp://hdl.handle.net/10553/114748-
dc.description.abstractRecent advances in FPGA technology have permitted the implementation of neurocomputational models, making them an interesting alternative to standard PCs in order to speed up the computations involved taking advantage of the intrinsic FPGA parallelism. In this work, we analyse and compare the FPGA implementation of two neural network learning algorithms: the standard and well known Back-Propagation algorithm and C-Mantec, a constructive neural network algorithm that generates compact one hidden layer architectures with good predictive capabilities. One of the main differences between both algorithms is the fact that while Back-Propagation needs a predefined architecture, C-Mantec constructs its network while learning the input patterns. Several aspects of the FPGA implementation of both algorithms are analyzed, focusing in features like logic and memory resources needed, transfer function implementation, computation time, etc. The advantages and disadvantages of both methods in relationship to their hardware implementations are discussed.en_US
dc.languageengen_US
dc.relation.ispartofNeural Processing Lettersen_US
dc.sourceNeural Processing Letters [ISSN 1370-4621], n. 46, p. 899-914en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherConstructive neural networksen_US
dc.subject.otherFPGAen_US
dc.subject.otherHardware implementationen_US
dc.titleFPGA implementation of neurocomputational models: comparison between standard back-propagation and C-Mantec constructive algorithmen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.identifier.doi10.1007/s11063-017-9655-xen_US
dc.identifier.scopus2-s2.0-85020518667-
dc.identifier.isiWOS:000416161200010-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0003-0012-5914-
dc.description.lastpage914en_US
dc.identifier.issue3-
dc.description.firstpage899en_US
dc.relation.volume46en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,51
dc.description.jcr1,787
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-4397-2905-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameOrtega Zamorano,Francisco-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 17, 2024

Page view(s)

76
checked on Jun 15, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.