Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114736
Título: Improving learning and generalization capabilities of the C-Mantec constructive neural network algorithm
Autores/as: Gómez, Iván
Mesa, Héctor
Ortega Zamorano, Francisco 
Jerez-Aragonés, José M.
Franco, Leonardo
Clasificación UNESCO: 1203 Ciencia de los ordenadores
Palabras clave: Constructive neural network
Feed-forward network
Support vector machine
C-Mantec
Learning and generalization properties, et al.
Fecha de publicación: 2020
Publicación seriada: Neural Computing and Applications 
Resumen: C-Mantec neural network constructive algorithm Ortega (C-Mantec neural network algorithm implementation on MATLAB. https://github.com/IvanGGomez/CmantecPaco, 2015) creates very compact architectures with generalization capabilities similar to feed-forward networks trained by the well-known back-propagation algorithm. Nevertheless, constructive algorithms suffer much from the problem of overfitting, and thus, in this work the learning procedure is first analyzed for networks created by this algorithm with the aim of trying to understand the training dynamics that will permit optimization possibilities. Secondly, several optimization strategies are analyzed for the position of class separating hyperplanes, and the results analyzed on a set of public domain benchmark data sets. The results indicate that with these modifications a small increase in prediction accuracy of C-Mantec can be obtained but in general this was not better when compared to a standard support vector machine, except in some cases when a mixed strategy is used.
URI: http://hdl.handle.net/10553/114736
ISSN: 0941-0643
DOI: 10.1007/s00521-019-04388-2
Fuente: Neural Computing and Applications [ISSN 0941-0643], n. 32, p. 8955-8963
Colección:Artículos
Vista completa

Citas SCOPUSTM   

3
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 17-nov-2024

Visitas

55
actualizado el 27-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.