Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/114736
Título: | Improving learning and generalization capabilities of the C-Mantec constructive neural network algorithm | Autores/as: | Gómez, Iván Mesa, Héctor Ortega Zamorano, Francisco Jerez-Aragonés, José M. Franco, Leonardo |
Clasificación UNESCO: | 1203 Ciencia de los ordenadores | Palabras clave: | Constructive neural network Feed-forward network Support vector machine C-Mantec Learning and generalization properties, et al. |
Fecha de publicación: | 2020 | Publicación seriada: | Neural Computing and Applications | Resumen: | C-Mantec neural network constructive algorithm Ortega (C-Mantec neural network algorithm implementation on MATLAB. https://github.com/IvanGGomez/CmantecPaco, 2015) creates very compact architectures with generalization capabilities similar to feed-forward networks trained by the well-known back-propagation algorithm. Nevertheless, constructive algorithms suffer much from the problem of overfitting, and thus, in this work the learning procedure is first analyzed for networks created by this algorithm with the aim of trying to understand the training dynamics that will permit optimization possibilities. Secondly, several optimization strategies are analyzed for the position of class separating hyperplanes, and the results analyzed on a set of public domain benchmark data sets. The results indicate that with these modifications a small increase in prediction accuracy of C-Mantec can be obtained but in general this was not better when compared to a standard support vector machine, except in some cases when a mixed strategy is used. | URI: | http://hdl.handle.net/10553/114736 | ISSN: | 0941-0643 | DOI: | 10.1007/s00521-019-04388-2 | Fuente: | Neural Computing and Applications [ISSN 0941-0643], n. 32, p. 8955-8963 |
Colección: | Artículos |
Citas SCOPUSTM
3
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
3
actualizado el 17-nov-2024
Visitas
55
actualizado el 27-abr-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.