Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114736
Campo DC Valoridioma
dc.contributor.authorGómez, Ivánen_US
dc.contributor.authorMesa, Héctoren_US
dc.contributor.authorOrtega Zamorano, Franciscoen_US
dc.contributor.authorJerez-Aragonés, José M.en_US
dc.contributor.authorFranco, Leonardoen_US
dc.date.accessioned2022-05-16T16:04:22Z-
dc.date.available2022-05-16T16:04:22Z-
dc.date.issued2020en_US
dc.identifier.issn0941-0643en_US
dc.identifier.urihttp://hdl.handle.net/10553/114736-
dc.description.abstractC-Mantec neural network constructive algorithm Ortega (C-Mantec neural network algorithm implementation on MATLAB. https://github.com/IvanGGomez/CmantecPaco, 2015) creates very compact architectures with generalization capabilities similar to feed-forward networks trained by the well-known back-propagation algorithm. Nevertheless, constructive algorithms suffer much from the problem of overfitting, and thus, in this work the learning procedure is first analyzed for networks created by this algorithm with the aim of trying to understand the training dynamics that will permit optimization possibilities. Secondly, several optimization strategies are analyzed for the position of class separating hyperplanes, and the results analyzed on a set of public domain benchmark data sets. The results indicate that with these modifications a small increase in prediction accuracy of C-Mantec can be obtained but in general this was not better when compared to a standard support vector machine, except in some cases when a mixed strategy is used.en_US
dc.languageengen_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.sourceNeural Computing and Applications [ISSN 0941-0643], n. 32, p. 8955-8963en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherConstructive neural networken_US
dc.subject.otherFeed-forward networken_US
dc.subject.otherSupport vector machineen_US
dc.subject.otherC-Mantecen_US
dc.subject.otherLearning and generalization propertiesen_US
dc.subject.otherLoading problemen_US
dc.titleImproving learning and generalization capabilities of the C-Mantec constructive neural network algorithmen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.identifier.doi10.1007/s00521-019-04388-2en_US
dc.identifier.scopus2-s2.0-85070095827-
dc.identifier.isiWOS:000544784200011-
dc.contributor.orcid0000-0001-7400-7860-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage8963en_US
dc.identifier.issue13-
dc.description.firstpage8955en_US
dc.relation.volume32en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,713
dc.description.jcr5,606
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-4397-2905-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameOrtega Zamorano,Francisco-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

3
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 17-nov-2024

Visitas

55
actualizado el 27-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.