Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/113935
Título: ORR: Optimized Round Robin CPU Scheduling Algorithm
Autores/as: Gupta, Amit Kumar
Mathur, Priya
Travieso-González, Carlos M. 
Garg, Muskan
Goyal, Dinesh
Clasificación UNESCO: 3304 Tecnología de los ordenadores
Palabras clave: CPU Scheduling
Multiple Linear Regression
Operating System
Round Robin Scheduling
Time Quantum
Fecha de publicación: 2021
Editor/a: Association for Computing Machinery 
Conferencia: 1st International Conference on Data Science, Machine Learning and Artificial Intelligence (DSMLAI 2021)
Resumen: The time-specific applications are assigned to Central Processing Unit (CPU) of the system and one of the most promising functions of the time-sharing operating systems is to schedule the process in such a way that it gets executed in minimal time. At present, the Round Robin Scheduling Algorithm (RRSA) is the most widely used technique in a timesharing operating system because it gives better performance than other scheduling techniques, namely, First Come First Serve (FCFS), Shortest Job First (SJF), and Priority scheduling. The major challenge in RRSA is the static value of Time Quantum (TQ) which have plays a pivotal to decrease or increase the performance of the system. In existing literature, many statistical techniques are used for identifying efficient time quantum for RRSA. However, there is limited exposure in existing literature on generating a learning model for identifying optimized TQ. In this research work, a new research direction is given for identifying Optimized TQ by training a learning model and predicting optimum TQ value. Thus, a new Optimized Round Robin (ORR) CPU Scheduling Algorithm is proposed for time-sharing operating systems by generating the knowledge base of feature set. The ORR is experimentally compared with RRSA and five other improved versions of RRSA. The experimental results show that ORR outperforms in terms of minimizing the Average Waiting Time (AWT), Average Turnaround Time (ATAT) Number of Context Switch (NCS) and maximizing the throughput of the system.
URI: http://hdl.handle.net/10553/113935
ISBN: 978-1-4503-8763-7
DOI: 10.1145/3484824.3484917
Fuente: DSMLAI '21': Proceedings of the International Conference on Data Science, Machine Learning and Artificial Intelligence, p. 296-304.
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

7
actualizado el 15-dic-2024

Visitas

153
actualizado el 07-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.