Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/113935
Campo DC Valoridioma
dc.contributor.authorGupta, Amit Kumaren_US
dc.contributor.authorMathur, Priyaen_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.contributor.authorGarg, Muskanen_US
dc.contributor.authorGoyal, Dineshen_US
dc.date.accessioned2022-03-03T10:28:09Z-
dc.date.available2022-03-03T10:28:09Z-
dc.date.issued2021en_US
dc.identifier.isbn978-1-4503-8763-7en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/113935-
dc.description.abstractThe time-specific applications are assigned to Central Processing Unit (CPU) of the system and one of the most promising functions of the time-sharing operating systems is to schedule the process in such a way that it gets executed in minimal time. At present, the Round Robin Scheduling Algorithm (RRSA) is the most widely used technique in a timesharing operating system because it gives better performance than other scheduling techniques, namely, First Come First Serve (FCFS), Shortest Job First (SJF), and Priority scheduling. The major challenge in RRSA is the static value of Time Quantum (TQ) which have plays a pivotal to decrease or increase the performance of the system. In existing literature, many statistical techniques are used for identifying efficient time quantum for RRSA. However, there is limited exposure in existing literature on generating a learning model for identifying optimized TQ. In this research work, a new research direction is given for identifying Optimized TQ by training a learning model and predicting optimum TQ value. Thus, a new Optimized Round Robin (ORR) CPU Scheduling Algorithm is proposed for time-sharing operating systems by generating the knowledge base of feature set. The ORR is experimentally compared with RRSA and five other improved versions of RRSA. The experimental results show that ORR outperforms in terms of minimizing the Average Waiting Time (AWT), Average Turnaround Time (ATAT) Number of Context Switch (NCS) and maximizing the throughput of the system.en_US
dc.languageengen_US
dc.publisherAssociation for Computing Machineryen_US
dc.sourceDSMLAI '21': Proceedings of the International Conference on Data Science, Machine Learning and Artificial Intelligence, p. 296-304.en_US
dc.subject3304 Tecnología de los ordenadoresen_US
dc.subject.otherCPU Schedulingen_US
dc.subject.otherMultiple Linear Regressionen_US
dc.subject.otherOperating Systemen_US
dc.subject.otherRound Robin Schedulingen_US
dc.subject.otherTime Quantumen_US
dc.titleORR: Optimized Round Robin CPU Scheduling Algorithmen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference1st International Conference on Data Science, Machine Learning and Artificial Intelligence (DSMLAI 2021)en_US
dc.identifier.doi10.1145/3484824.3484917en_US
dc.identifier.scopus85123785902-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57211694716-
dc.contributor.authorscopusid57210263461-
dc.contributor.authorscopusid57219115631-
dc.contributor.authorscopusid57201597990-
dc.contributor.authorscopusid57211719867-
dc.description.lastpage304en_US
dc.description.firstpage296en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.description.numberofpages9en_US
dc.utils.revisionen_US
dc.date.coverdateAgosto 2021en_US
dc.identifier.conferenceidevents130077-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

6
actualizado el 24-nov-2024

Visitas

153
actualizado el 07-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.