Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/113705
Título: | Inflated 3D ConvNet context analysis for violence detection | Autores/as: | Freire Obregón, David Sebastián Barra, P Castrillón Santana, Modesto Fernando De Marsico, M |
Clasificación UNESCO: | 120304 Inteligencia artificial 220990 Tratamiento digital. Imágenes |
Palabras clave: | Violence detection People tracking I3D model Context analysis Transfer learning |
Fecha de publicación: | 2022 | Publicación seriada: | Machine Vision and Applications | Resumen: | According to the Wall Street Journal, one billion surveillance cameras will be deployed around the world by 2021. This amount of information can be hardly managed by humans. Using a Inflated 3D ConvNet as backbone, this paper introduces a novel automatic violence detection approach that outperforms state-of-the-art existing proposals. Most of those proposals consider a pre-processing step to only focus on some regions of interest in the scene, i.e., those actually containing a human subject. In this regard, this paper also reports the results of an extensive analysis on whether and how the context can affect or not the adopted classifier performance. The experiments show that context-free footage yields substantial deterioration of the classifier performance (2% to 5%) on publicly available datasets. However, they also demonstrate that performance stabilizes in context-free settings, no matter the level of context restriction applied. Finally, a cross-dataset experiment investigates the generalizability of results obtained in a single-collection experiment (same dataset used for training and testing) to cross-collection settings (different datasets used for training and testing). | URI: | http://hdl.handle.net/10553/113705 | ISSN: | 0932-8092 | DOI: | 10.1007/s00138-021-01264-9 | Fuente: | Machine Vision and Applications [ISSN 0932-8092], v. 33(1), (Enero 2022) |
Colección: | Artículos |
Citas SCOPUSTM
33
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
23
actualizado el 17-nov-2024
Visitas
84
actualizado el 10-ago-2024
Descargas
79
actualizado el 10-ago-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.