Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/113705
Title: | Inflated 3D ConvNet context analysis for violence detection | Authors: | Freire Obregón, David Sebastián Barra, P Castrillón Santana, Modesto Fernando De Marsico, M |
UNESCO Clasification: | 120304 Inteligencia artificial 220990 Tratamiento digital. Imágenes |
Keywords: | Violence detection People tracking I3D model Context analysis Transfer learning |
Issue Date: | 2022 | Journal: | Machine Vision and Applications | Abstract: | According to the Wall Street Journal, one billion surveillance cameras will be deployed around the world by 2021. This amount of information can be hardly managed by humans. Using a Inflated 3D ConvNet as backbone, this paper introduces a novel automatic violence detection approach that outperforms state-of-the-art existing proposals. Most of those proposals consider a pre-processing step to only focus on some regions of interest in the scene, i.e., those actually containing a human subject. In this regard, this paper also reports the results of an extensive analysis on whether and how the context can affect or not the adopted classifier performance. The experiments show that context-free footage yields substantial deterioration of the classifier performance (2% to 5%) on publicly available datasets. However, they also demonstrate that performance stabilizes in context-free settings, no matter the level of context restriction applied. Finally, a cross-dataset experiment investigates the generalizability of results obtained in a single-collection experiment (same dataset used for training and testing) to cross-collection settings (different datasets used for training and testing). | URI: | http://hdl.handle.net/10553/113705 | ISSN: | 0932-8092 | DOI: | 10.1007/s00138-021-01264-9 | Source: | Machine Vision and Applications [ISSN 0932-8092], v. 33(1), (Enero 2022) |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
30
checked on Sep 15, 2024
WEB OF SCIENCETM
Citations
19
checked on Sep 15, 2024
Page view(s)
84
checked on Aug 10, 2024
Download(s)
79
checked on Aug 10, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.