Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/112163
Título: | The influence of distances in NLM Polsar filters | Autores/as: | Gomez-Deniz, L. Frery, A. C. |
Clasificación UNESCO: | 220920 Radiometría | Palabras clave: | Non-Local Means PolSAR SDNLM Speckle Stochastic Distances |
Fecha de publicación: | 2019 | Editor/a: | Institute of Electrical and Electronics Engineers (IEEE) | Publicación seriada: | IEEE International Geoscience and Remote Sensing Symposium proceedings | Conferencia: | 39th IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019) | Resumen: | The NLM (Nonlocal Means) approach is an effective framework for noise reduction. It relies on building, for each pixel, a convolution matrix whose entries are measures of similarities between patches. Such measures have to be computed between positive-definite Hermitian matrices when it comes to Polarimetric Synthetic Aperture Radar (PolSAR) imagery. Speckle reduction in this kind of images is a difficult task, as it is expected that several properties are well preserved by the filter. Torres et al. (2014) used a test statistic between Wishart distributions based on the Hellinger distance to compute such measures of similarity. In this work we assess the impact of using this and two other stochastic distances (Kullback-Leibler and Bhattacharya) under the same framework. The comparison is made using mean preservation, equivalent number of looks, edge correlation and the structural similarity index. | URI: | http://hdl.handle.net/10553/112163 | ISBN: | 978-1-5386-9154-0 | ISSN: | 2153-6996 | DOI: | 10.1109/IGARSS.2019.8900394 | Fuente: | International Geoscience and Remote Sensing Symposium (IGARSS)[EISSN 2153-6996], v. 2019-January, p. 5109-5112, (Enero 2019) |
Colección: | Actas de congresos |
Citas SCOPUSTM
2
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 17-nov-2024
Visitas
65
actualizado el 30-dic-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.