Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/112160
Título: Planar 3D transfer learning for end to end unimodal MRI unbalanced data segmentation
Autores/as: Kolarik, Martin
Burget, Radim
Travieso Gonzalez, Carlos M.
Kocica, Jan
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
Fecha de publicación: 2020
Editor/a: Institute of Electrical and Electronics Engineers (IEEE) 
Publicación seriada: Proceedings - International Conference on Pattern Recognition 
Conferencia: 25th International Conference on Pattern Recognition (ICPR 2020) 
Resumen: We present a novel approach of 2D to 3D transfer learning based on mapping pre-trained 2D convolutional neural network weights into planar 3D kernels. The method is validated by the proposed planar 3D res-u-net network with encoder transferred from the 2D VGG-16, which is applied for a single-stage unbalanced 3D image data segmentation. In particular, we evaluate the method on the MICCAI 2016 MS lesion segmentation challenge dataset utilizing solely fluid-attenuated inversion recovery (FLAIR) sequence without brain extraction for training and inference to simulate real medical praxis. The planar 3D res-u-net network performed the best both in sensitivity and Dice score amongst end to end methods processing raw MRI scans and achieved comparable Dice score to a state-of-the-art unimodal not end to end approach. Complete source code was released under the open-source license, and this paper complies with the Machine learning reproducibility checklist. By implementing practical transfer learning for 3D data representation, we could segment heavily unbalanced data without selective sampling and achieved more reliable results using less training data in a single modality. From a medical perspective, the unimodal approach gives an advantage in real praxis as it does not require co-registration nor additional scanning time during an examination. Although modern medical imaging methods capture high-resolution 3D anatomy scans suitable for computer-aided detection system processing, deployment of automatic systems for interpretation of radiology imaging is still rather theoretical in many medical areas. Our work aims to bridge the gap by offering a solution for partial research questions.
URI: http://hdl.handle.net/10553/112160
ISBN: 978-1-7281-8808-9
ISSN: 1051-4651
DOI: 10.1109/ICPR48806.2021.9412150
Fuente: Proceedings - International Conference on Pattern Recognition [ISSN 1051-4651], p. 6051-6058, (Enero 2020)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

6
actualizado el 29-dic-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 29-dic-2024

Visitas

58
actualizado el 10-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.