Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/112160
Campo DC Valoridioma
dc.contributor.authorKolarik, Martinen_US
dc.contributor.authorBurget, Radimen_US
dc.contributor.authorTravieso Gonzalez, Carlos M.en_US
dc.contributor.authorKocica, Janen_US
dc.date.accessioned2021-10-06T15:16:59Z-
dc.date.available2021-10-06T15:16:59Z-
dc.date.issued2020en_US
dc.identifier.isbn978-1-7281-8808-9en_US
dc.identifier.issn1051-4651en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/112160-
dc.description.abstractWe present a novel approach of 2D to 3D transfer learning based on mapping pre-trained 2D convolutional neural network weights into planar 3D kernels. The method is validated by the proposed planar 3D res-u-net network with encoder transferred from the 2D VGG-16, which is applied for a single-stage unbalanced 3D image data segmentation. In particular, we evaluate the method on the MICCAI 2016 MS lesion segmentation challenge dataset utilizing solely fluid-attenuated inversion recovery (FLAIR) sequence without brain extraction for training and inference to simulate real medical praxis. The planar 3D res-u-net network performed the best both in sensitivity and Dice score amongst end to end methods processing raw MRI scans and achieved comparable Dice score to a state-of-the-art unimodal not end to end approach. Complete source code was released under the open-source license, and this paper complies with the Machine learning reproducibility checklist. By implementing practical transfer learning for 3D data representation, we could segment heavily unbalanced data without selective sampling and achieved more reliable results using less training data in a single modality. From a medical perspective, the unimodal approach gives an advantage in real praxis as it does not require co-registration nor additional scanning time during an examination. Although modern medical imaging methods capture high-resolution 3D anatomy scans suitable for computer-aided detection system processing, deployment of automatic systems for interpretation of radiology imaging is still rather theoretical in many medical areas. Our work aims to bridge the gap by offering a solution for partial research questions.en_US
dc.languageengen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.ispartofProceedings - International Conference on Pattern Recognitionen_US
dc.sourceProceedings - International Conference on Pattern Recognition [ISSN 1051-4651], p. 6051-6058, (Enero 2020)en_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.titlePlanar 3D transfer learning for end to end unimodal MRI unbalanced data segmentationen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference25th International Conference on Pattern Recognition (ICPR 2020)en_US
dc.identifier.doi10.1109/ICPR48806.2021.9412150en_US
dc.identifier.scopus85110498401-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57203913329-
dc.contributor.authorscopusid23011250200-
dc.contributor.authorscopusid57219115631-
dc.contributor.authorscopusid57209248037-
dc.description.lastpage6058en_US
dc.description.firstpage6051en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.eisbn978-1-7281-8809-6-
dc.utils.revisionen_US
dc.date.coverdateEnero 2020en_US
dc.identifier.conferenceidevents129888-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.ggs2
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate10-01-2021-
crisitem.event.eventsenddate15-01-2021-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.