Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/111149
Título: Comparison of two solar probabilistic forecasting methodologies for microgrids energy efficiency
Autores/as: Mazorra Aguiar, Luis 
Lauret, Philippe
David, Mathieu
Oliver, Albert 
Montero García, Gustavo 
Clasificación UNESCO: 332205 Fuentes no convencionales de energía
Palabras clave: CRPS
Probabilistic Solar Forecasting
Quantile Regression Models
Fecha de publicación: 2021
Publicación seriada: Energies (Basel) 
Resumen: In this paper, the performances of two approaches for solar probabilistic are evaluated using a set of metrics previously tested by the meteorology verification community. A particular focus is put on several scores and the decomposition of a specific probabilistic metric: the continuous rank probability score (CRPS) as they give extensive information to compare the forecasting performance of both methodologies. The two solar probabilistic forecasting methodologies are used to produce intra-day solar forecasts with time horizons ranging from 1 h to 6 h. The first methodology is based on two steps. In the first step, we generated a point forecast for each horizon and in a second step, we use quantile regression methods to estimate the prediction intervals. The second methodology directly estimates the prediction intervals of the forecasted clear sky index distribution using past data as inputs. With this second methodology we also propose to add solar geometric angles as inputs. Overall, nine probabilistic forecasting performances are compared at six measurements stations with different climatic conditions. This paper shows a detailed picture of the overall performance of the models and consequently may help in selecting the best methodology.
URI: http://hdl.handle.net/10553/111149
ISSN: 1996-1073
DOI: 10.3390/en14061679
Fuente: Energies (Basel) [eISSN 1996-1073], v. 14, 1679, (Marzo 2021)
Colección:Artículos
Adobe PDF (6 MB)
Vista completa

Citas SCOPUSTM   

4
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 17-nov-2024

Visitas

138
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.