Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/111149
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mazorra Aguiar, Luis | en_US |
dc.contributor.author | Lauret, Philippe | en_US |
dc.contributor.author | David, Mathieu | en_US |
dc.contributor.author | Oliver, Albert | en_US |
dc.contributor.author | Montero García, Gustavo | en_US |
dc.date.accessioned | 2021-07-28T11:21:09Z | - |
dc.date.available | 2021-07-28T11:21:09Z | - |
dc.date.issued | 2021 | en_US |
dc.identifier.issn | 1996-1073 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/111149 | - |
dc.description.abstract | In this paper, the performances of two approaches for solar probabilistic are evaluated using a set of metrics previously tested by the meteorology verification community. A particular focus is put on several scores and the decomposition of a specific probabilistic metric: the continuous rank probability score (CRPS) as they give extensive information to compare the forecasting performance of both methodologies. The two solar probabilistic forecasting methodologies are used to produce intra-day solar forecasts with time horizons ranging from 1 h to 6 h. The first methodology is based on two steps. In the first step, we generated a point forecast for each horizon and in a second step, we use quantile regression methods to estimate the prediction intervals. The second methodology directly estimates the prediction intervals of the forecasted clear sky index distribution using past data as inputs. With this second methodology we also propose to add solar geometric angles as inputs. Overall, nine probabilistic forecasting performances are compared at six measurements stations with different climatic conditions. This paper shows a detailed picture of the overall performance of the models and consequently may help in selecting the best methodology. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Energies (Basel) | en_US |
dc.source | Energies (Basel) [eISSN 1996-1073], v. 14, 1679, (Marzo 2021) | en_US |
dc.subject | 332205 Fuentes no convencionales de energía | en_US |
dc.subject.other | CRPS | en_US |
dc.subject.other | Probabilistic Solar Forecasting | en_US |
dc.subject.other | Quantile Regression Models | en_US |
dc.title | Comparison of two solar probabilistic forecasting methodologies for microgrids energy efficiency | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/en14061679 | en_US |
dc.identifier.scopus | 85106416855 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 56971482900 | - |
dc.contributor.authorscopusid | 7004327525 | - |
dc.contributor.authorscopusid | 35486904800 | - |
dc.contributor.authorscopusid | 57215071329 | - |
dc.contributor.authorscopusid | 56256002000 | - |
dc.identifier.eissn | 1996-1073 | - |
dc.identifier.issue | 6 | - |
dc.relation.volume | 14 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.description.notas | This article belongs to the Special Issue Analysis of Microgrid Integrated with Renewable Energy System | en_US |
dc.description.numberofpages | 26 | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Marzo 2021 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
dc.description.sjr | 0,653 | - |
dc.description.jcr | 3,252 | - |
dc.description.sjrq | Q1 | - |
dc.description.jcrq | Q3 | - |
dc.description.scie | SCIE | - |
dc.description.miaricds | 10,6 | - |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR SIANI: Modelización y Simulación Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Ingeniería Eléctrica | - |
crisitem.author.dept | GIR SIANI: Modelización y Simulación Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Matemáticas | - |
crisitem.author.dept | GIR SIANI: Modelización y Simulación Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Matemáticas | - |
crisitem.author.orcid | 0000-0002-9746-7461 | - |
crisitem.author.orcid | 0000-0002-3783-8670 | - |
crisitem.author.orcid | 0000-0001-5641-442X | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Mazorra Aguiar, Luis | - |
crisitem.author.fullName | Oliver Serra, Albert | - |
crisitem.author.fullName | Montero García, Gustavo | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
4
checked on Nov 24, 2024
WEB OF SCIENCETM
Citations
4
checked on Nov 24, 2024
Page view(s)
138
checked on Mar 9, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.