Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/111149
Campo DC Valoridioma
dc.contributor.authorMazorra Aguiar, Luisen_US
dc.contributor.authorLauret, Philippeen_US
dc.contributor.authorDavid, Mathieuen_US
dc.contributor.authorOliver, Alberten_US
dc.contributor.authorMontero García, Gustavoen_US
dc.date.accessioned2021-07-28T11:21:09Z-
dc.date.available2021-07-28T11:21:09Z-
dc.date.issued2021en_US
dc.identifier.issn1996-1073en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/111149-
dc.description.abstractIn this paper, the performances of two approaches for solar probabilistic are evaluated using a set of metrics previously tested by the meteorology verification community. A particular focus is put on several scores and the decomposition of a specific probabilistic metric: the continuous rank probability score (CRPS) as they give extensive information to compare the forecasting performance of both methodologies. The two solar probabilistic forecasting methodologies are used to produce intra-day solar forecasts with time horizons ranging from 1 h to 6 h. The first methodology is based on two steps. In the first step, we generated a point forecast for each horizon and in a second step, we use quantile regression methods to estimate the prediction intervals. The second methodology directly estimates the prediction intervals of the forecasted clear sky index distribution using past data as inputs. With this second methodology we also propose to add solar geometric angles as inputs. Overall, nine probabilistic forecasting performances are compared at six measurements stations with different climatic conditions. This paper shows a detailed picture of the overall performance of the models and consequently may help in selecting the best methodology.en_US
dc.languageengen_US
dc.relation.ispartofEnergies (Basel)en_US
dc.sourceEnergies (Basel) [eISSN 1996-1073], v. 14, 1679, (Marzo 2021)en_US
dc.subject332205 Fuentes no convencionales de energíaen_US
dc.subject.otherCRPSen_US
dc.subject.otherProbabilistic Solar Forecastingen_US
dc.subject.otherQuantile Regression Modelsen_US
dc.titleComparison of two solar probabilistic forecasting methodologies for microgrids energy efficiencyen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/en14061679en_US
dc.identifier.scopus85106416855-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid56971482900-
dc.contributor.authorscopusid7004327525-
dc.contributor.authorscopusid35486904800-
dc.contributor.authorscopusid57215071329-
dc.contributor.authorscopusid56256002000-
dc.identifier.eissn1996-1073-
dc.identifier.issue6-
dc.relation.volume14en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.notasThis article belongs to the Special Issue Analysis of Microgrid Integrated with Renewable Energy Systemen_US
dc.description.numberofpages26en_US
dc.utils.revisionen_US
dc.date.coverdateMarzo 2021en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,653-
dc.description.jcr3,252-
dc.description.sjrqQ1-
dc.description.jcrqQ3-
dc.description.scieSCIE-
dc.description.miaricds10,6-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Eléctrica-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-9746-7461-
crisitem.author.orcid0000-0002-3783-8670-
crisitem.author.orcid0000-0001-5641-442X-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMazorra Aguiar, Luis-
crisitem.author.fullNameOliver Serra, Albert-
crisitem.author.fullNameMontero García, Gustavo-
Colección:Artículos
Adobe PDF (6 MB)
Vista resumida

Citas SCOPUSTM   

4
actualizado el 08-dic-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 08-dic-2024

Visitas

138
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.