Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/111099
Título: Design Methodology of a Fully Parallelized Neural Network on a FPGA
Autores/as: Pérez Suárez, Santiago Tomás 
Robaina, Carlos Osorio
Vásquez Núñez, José L.
Alonso Hernández, Jesús Bernardino 
Travieso González, Carlos Manuel 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Neural Network
FPGA
Floating point
Fixed point
Matlab, et al.
Fecha de publicación: 2014
Editor/a: WSEAS Press 
Publicación seriada: Recent advances in electrical engineering 
Conferencia: 8th International Conference on Circuits, Systems, Signal and Telecommunications (CSST 2014) 
Resumen: In this work a methodology of a parallelized neural network has been designed. It explains a way to design a Neural Network using Mathworks and Xilinx Tools. Initially, the floating point algorithm was evaluated using MatlabNeural Network Toolbox. Afterwards, the fixed point algorithm was designed on a Field Programmable Gate Array (FPGA).The architecture was fully parallelized. The design tool used is System Generator of Xilinx, which works over Simulink. Finally the System Generator design is compiled for Xilinx Integrated System Environment (ISE).
URI: http://hdl.handle.net/10553/111099
ISBN: 978-960-474-359-9
ISSN: 1790-5117
Fuente: Proceedings of the 8th WSEAS International Conference on Circuits, Systems, Signal and Telecommunications (CSST 2014)
Colección:Actas de congresos
Adobe PDF (593,63 kB)
Vista completa

Visitas

106
actualizado el 01-nov-2024

Descargas

53
actualizado el 01-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.