Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/107470
Título: | Writing Order Recovery in Complex and Long Static Handwriting | Autores/as: | Díaz Cabrera, Moisés Crispo, Gioele Parziale, Antonio Marcelli, Angelo Ferrer Ballester, Miguel Ángel |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Cluster Resolution Complex and Long Handwriting Good Continuity Criteria Writing Order Recovery |
Fecha de publicación: | 2021 | Proyectos: | Generacion de Un Marco Unificado Para El Desarrollo de Patrones Biometricos de Comportamiento Modelado cinemático 3D para la caracterización del movimiento humano, animal y robótico |
Publicación seriada: | International Journal Of Interactive Multimedia And Artificial Intelligence | Resumen: | The order in which the trajectory is executed is a powerful source of information for recognizers. However, there is still no general approach for recovering the trajectory of complex and long handwriting from static images. Complex specimens can result in multiple pen-downs and in a high number of trajectory crossings yielding agglomerations of pixels (also known as clusters). While the scientific literature describes a wide range of approaches for recovering the writing order in handwriting, these approaches nevertheless lack a common evaluation metric. In this paper, we introduce a new system to estimate the order recovery of thinned static trajectories, which allows to effectively resolve the clusters and select the order of the executed pendowns. We evaluate how knowing the starting points of the pen-downs affects the quality of the recovered writing. Once the stability and sensitivity of the system is analyzed, we describe a series of experiments with three publicly available databases, showing competitive results in all cases. We expect the proposed system, whose code is made publicly available to the research community, to reduce potential confusion when the order of complex trajectories are recovered, and this will in turn make the trajectories recovered to be viable for further applications, such as velocity estimation. | URI: | http://hdl.handle.net/10553/107470 | ISSN: | 1989-1660 | DOI: | 10.9781/ijimai.2021.04.003 | Fuente: | International Journal Of Interactive Multimedia And Artificial Intelligence [1989-1660], |
Colección: | Artículos |
Citas SCOPUSTM
8
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
4
actualizado el 17-nov-2024
Visitas
235
actualizado el 28-sep-2024
Descargas
380
actualizado el 28-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.