Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/77431
Campo DC Valoridioma
dc.contributor.advisorMarrero Callicó, Gustavo Ivánes
dc.contributor.advisorFabelo Gómez, Himar Antonioes
dc.contributor.authorHernández Guedes, Abiánes
dc.date.accessioned2021-02-01T12:39:16Z-
dc.date.available2021-02-01T12:39:16Z-
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/10553/77431-
dc.description.abstractGraphics Processing Units (GPUs) have become extremely popular in the high-performance computing area due to its massively parallel hardware architecture. This architecture allows to exploit abundant data level parallelism while reducing power consumption in the instruction fetching, decoding, and issuing. For this reason, GPUs are suitable platforms to accelerate the classification of hyperspectral images which are an emerging technology for medical diagnosis. Hyperspectral imaging sensors measure the radiance of the materials within each pixel area at a very large number of contiguous spectral wavelengths, exploiting the fact that all materials reflect, absorb or emit electromagnetic energy, at specific wavelengths, in distinctive patterns related to their molecular composition. Hyperspectral data can be processed using multiples different supervised learning algorithms to detect human brain tumour tissue. Random Forest, a machine learning method that has become popular in object detection tasks in the computer vision community, has proved to be a good candidate in order to classify hyperspectral images. Generally, training a Random Forest model on large datasets is computationally demanding and makes scientific research difficult since the process requires too much computational time if there is not available a high performance computing platform. The goal of this Master’s Thesis is focused in the Random Forest training phase acceleration using GPUs, starting from an efficiently sequential implementation of this algorithm. We present multiple bottlenecks identified in the training phase and a solution for these bottlenecks in order to accelerate the algorithms. The different bottleneck solutions achieved in this research study have demonstrated that GPU acceleration is promising in order to generate models in a shorter time, giving the possibility to perform this process in real-time in a close future.en_US
dc.languageengen_US
dc.relationHyperspectral Imaging Cancer Detection (Helicoid) (Contrato Nº 618080)en_US
dc.subject3325 Tecnología de las telecomunicacionesen_US
dc.titleImplementación de Algoritmos de Clasificación de Imágenes Hiperespectrales para la Detección de Tumores sobre Tarjetas Gráficas Programables (GPUs)es
dc.title.alternativeImplementation of Hyperspectral Image Classification Algorithms for Brain Tumor Detection Using Graphical Processing Units (GPUS)en_US
dc.typeinfo:eu-repo/semantics/masterThesisen_US
dc.typeMasterThesisen_US
dc.contributor.centroIU de Microelectrónica Aplicadaen_US
dc.contributor.facultadEscuela de Ingeniería de Telecomunicación y Electrónicaen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Trabajo final de másteren_US
dc.utils.revisionen_US
dc.identifier.matriculaTFT-38989es
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELes
dc.contributor.titulacionMáster Universitario en Tecnologías de Telecomunicaciónes
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.advisor.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.advisor.deptIU de Microelectrónica Aplicada-
crisitem.advisor.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.advisor.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.advisor.deptIU de Microelectrónica Aplicada-
crisitem.project.principalinvestigatorMarrero Callicó, Gustavo Iván-
crisitem.author.orcid0000-0002-2508-2845-
crisitem.author.fullNameHernández Guedes, Abián-
Colección:Trabajo final de máster
miniatura
Adobe PDF (18,56 MB)
miniatura
Adobe PDF (947,3 kB)
miniatura
Adobe PDF (386,96 kB)
Vista resumida

Visitas

131
actualizado el 01-nov-2024

Descargas

109
actualizado el 01-nov-2024

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.