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Abstract—Graphic Processing Units are suitable platforms to 

accelerate the classification of hyperspectral images tasks which 

are an emerging technology for medical diagnosis. Random Forest 

has proved to be a great candidate in order to classify 

hyperspectral images. The goal of this paper is focused in the 

Random Forest training phase acceleration using GPUs, starting 

from an efficiently CPU implementation of this algorithm. We 

present multiple bottlenecks identified in the training phase and 

their solution in order to accelerate them. The different bottleneck 

solutions achieved in this research study have demonstrated that 

GPU acceleration is promising in order to generate models in a 

shorter time, giving the possibility to perform this process in real-

time in the not too distant future. 
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I.  INTRODUCTION  

Hyperspectral imaging (HSI) refers to the technology that 

integrates conventional imaging and spectroscopy methods to 

obtain both spatial and spectral information of an object [1]. 

HSI sensors measure the radiance of the materials within each 

pixel area at a very large number of contiguous spectral 

wavelength bands [2] [3]. The basic task underlying many HSI 

applications is to identify different materials based on their 

reflectance spectrum. HSI is an emerging imaging modality for 

medical applications, especially in disease diagnosis and 

image-guided surgery [4]. This technology shows some 

advantages compared to the currently techniques employed for 

cancer detection, such as Magnetic Resonance (MR), 

Computed Tomography (CT), Ultrasound (US) and Positron 

Emission Tomography (PET). The long-term goal of 

hyperspectral imaging in cancer detection is to develop a 

simple-to-use, non-invasive, and risk-free tool that will provide 

early and affordable detection of potentially life threatening 

malignant tumours. This technology can be use both for 

screening enhancement and for quantitative analysis of tissue 

[5]. Since HSI collects high amount of data, it is needed the 

utilization of high-performance computer platforms where the 

processing algorithms are implemented. Nowadays, machine 

learning is used in many research fields because it offers 

automated procedures that it allows to predict a behaviour based 

on multiples past observations. The purpose of this work is to 

use the machine learning for classification of hyperspectral 

images using Random Forest (RF) [6], implementing this 

algorithm in a GPU so as to accelerate the critical parts of the 

training phase to process in-vivo human brain hyperspectral 

images. This work is framed in the European Project 

HELICoiD “HypErspectral Imaging Cancer Detection” (FP7-

618080) [7]. 

II.  MATERIALS AND METHODS 

A. In-vivo human brain tumour database 

This study uses the hyperspectral images obtained by the 

acquisition system developed within the HELICoiD project at 

the University Hospital Doctor Negrín of Las Palmas de Gran 

Canaria. The hyperspectral acquisition system consists of two 

hyperspectral cameras coupled together able to capture two 

different hyperspectral cubes in the VNIR (Visible and Near 

Infrared) and NIR (Near Infrared) spectral range. This work is 

focused in the images obtained in the VNIR range. The dataset 

is composed by 6 different images from 4 different patients 

affected by a glioblastoma (GBM) tumour. The samples have 

been pre-processed reducing the number of bands (features) to 

129 and have been labelled in 4 different classes (Normal 

Tissue, Tumour Tissue, Blood Vessels and Background) 

obtaining a total of 87,722 in-vivo human brain samples. 

B. Random Forest for Tumour Detection 

The RF CPU implementation has been based on an existent 

implementation called Ranger (RANdom Forest GeneRator) 

[8]. The core of Ranger is implemented in C++ and uses only 

standard libraries. Ranger has been verified using the 

previously described database. K-Fold Cross-Validation 

method has been employed for the evaluation with 10 folds. 

Figure 1 presents the average of the evaluation metrics 

(sensitivity, specificity and overall accuracy) for the different 

classes performed to the dataset. These results outperform 99% 

of overall accuracy for every class providing good 

discrimination between the different classes. 

 
Figure 1: Cross-validation result of the Ranger CPU implementation with a 

forest of 500 trees 



C. Random Forest Parallelization Analysis 

Ranger has a good performance analysis in the different 

bottleneck of RF algorithm. However, we identified multiple 

bottleneck of Ranger that could be accelerated using GPUs. The 

first bottleneck will accelerate the forest initialization. We 

proposed to generate the learning set of different trees during 

the initialization of the forest in order to construct multiple trees 

by setting the learning set. It can be only used if Ranger option 

generates a bootstrap learning set without replacement. The 

principal bottleneck of Ranger is within the splitting process, 

during the grow phase of a tree, to compute node impurity. Non-

terminal nodes need to splitting and is necessary to identify 

which feature is better, between all possible candidate, and what 

value to use for threshold. the problem of locating the best split 

scale proportionally to the number of samples and the number 

of possible features. 

D. GPU Implementation 

GPU kernels have been implemented in order to get a better 

performance in the RF algorithm. In the bootstrap kernel, the 

idea is that each block generates the training dataset for each 

tree. The solution is a one dimensional grid where each block 

generates the learning set of a tree (Figure 2). As training set is 

generated randomly from dataset, cuRAND library has been 

used. The most critical part that we identified is in the method 

which generates a new split node, findBestSplit method. This 

process is divided in three kernels: first kernel generates an 

overall class count from the dataset, second kernel generates an 

overall class count of the possible right child nodes and the last 

kernel computes the decrease of impurity of the node. The 

second kernel uses a two-dimensional grid where the number of 

blocks in X axis is the number of possible features and Y axis 

is fixed (Figure 3). The other kernels use a one-dimensional grid 

with a fixed number of blocks in X axis.  

 
Figure 2: Bootstrap one-dimensional grid layout of the bootstrap kernel for 

nTree number of trees. 

 
Figure 3: Two-dimensional grid layout of overall class count in the possible 

right node child. We use the X coordinate for the feature response and the Y 
coordinate assign a threshold. 

III. EXPERIMENTAL RESULTS 

This section presents the results achieved in the different 

bottleneck solutions. Two different equipment have been used 

for these tests, a laptop (Intel Processor i7-6700HQ and a 

NVIDIA GPU GTX 960M) and a server (Intel Xeon Processor 

E3-1225 v3 and a NVIDIA GPU Tesla K40). Figure 4 shows 

the comparison between the results generated using both 

platforms. Figure 5 shows the graphical comparison between 

the results obtained using the laptop versus the server using 

multiple possible features (3, 6, 12, 18 and 24) in the 

findBestSplit kernel.  

 
Figure 4:  Testing bootstrap kernel comparison (GTX 960M vs. Tesla K40). 

 
Figure 5: Testing findBestSplit kernel comparison with 74,180 samples in the 

non-terminal node (laptop vs. IUMA’s server). 

IV. CONCLUSIONS 

This research work presents a comparison between two kernels 

developed to accelerate the training process in the RF algorithm 

using two different platforms employing in-vivo human brain 

hyperspectral samples. The bootstrap kernel offers better 

results in Tesla K40 than GTX 960M when the number of trees 

is higher than 750. This result could depend of the number of 

Stream Multiprocessor (SMX) available and the 

synchronization time of the different blocks. However, 

findBestSplit kernel has better performance in GTX 960M than 

Tesla K40, due to this kernel has a grid with less variability than 

the Tesla kernel, the number of blocks in Y axis is fixed and the 

range of blocks in X axis is much smaller than the range in the 

bootstrap kernel. Although the kernel is misusing resources of 

Tesla K40, we have demonstrated that the findBestSplit kernel 

works correctly and it has a better performance than CPU 

comparison. 
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