
Implementation of Hyperspectral Image

Classification Algorithms for Brain Tumour

Detection using Graphical Processing Units (GPUs)

A. H. Guedes1, H. Fabelo and G. M. Callicó1
1Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Spain

Abstract—Graphic Processing Units are suitable platforms to

accelerate the classification of hyperspectral images tasks which

are an emerging technology for medical diagnosis. Random Forest

has proved to be a great candidate in order to classify

hyperspectral images. The goal of this paper is focused in the

Random Forest training phase acceleration using GPUs, starting

from an efficiently CPU implementation of this algorithm. We

present multiple bottlenecks identified in the training phase and

their solution in order to accelerate them. The different bottleneck

solutions achieved in this research study have demonstrated that

GPU acceleration is promising in order to generate models in a

shorter time, giving the possibility to perform this process in real-

time in the not too distant future.

Keywords - Hyperspectral imaging; Supervised Learning; High

Performance Computing; Graphical Processing Units; Random

Forest

I. INTRODUCTION

Hyperspectral imaging (HSI) refers to the technology that

integrates conventional imaging and spectroscopy methods to

obtain both spatial and spectral information of an object [1].

HSI sensors measure the radiance of the materials within each

pixel area at a very large number of contiguous spectral

wavelength bands [2] [3]. The basic task underlying many HSI

applications is to identify different materials based on their

reflectance spectrum. HSI is an emerging imaging modality for

medical applications, especially in disease diagnosis and

image-guided surgery [4]. This technology shows some

advantages compared to the currently techniques employed for

cancer detection, such as Magnetic Resonance (MR),

Computed Tomography (CT), Ultrasound (US) and Positron

Emission Tomography (PET). The long-term goal of

hyperspectral imaging in cancer detection is to develop a

simple-to-use, non-invasive, and risk-free tool that will provide

early and affordable detection of potentially life threatening

malignant tumours. This technology can be use both for

screening enhancement and for quantitative analysis of tissue

[5]. Since HSI collects high amount of data, it is needed the

utilization of high-performance computer platforms where the

processing algorithms are implemented. Nowadays, machine

learning is used in many research fields because it offers

automated procedures that it allows to predict a behaviour based

on multiples past observations. The purpose of this work is to

use the machine learning for classification of hyperspectral

images using Random Forest (RF) [6], implementing this

algorithm in a GPU so as to accelerate the critical parts of the

training phase to process in-vivo human brain hyperspectral

images. This work is framed in the European Project

HELICoiD “HypErspectral Imaging Cancer Detection” (FP7-

618080) [7].

II. MATERIALS AND METHODS

A. In-vivo human brain tumour database

This study uses the hyperspectral images obtained by the

acquisition system developed within the HELICoiD project at

the University Hospital Doctor Negrín of Las Palmas de Gran

Canaria. The hyperspectral acquisition system consists of two

hyperspectral cameras coupled together able to capture two

different hyperspectral cubes in the VNIR (Visible and Near

Infrared) and NIR (Near Infrared) spectral range. This work is

focused in the images obtained in the VNIR range. The dataset

is composed by 6 different images from 4 different patients

affected by a glioblastoma (GBM) tumour. The samples have

been pre-processed reducing the number of bands (features) to

129 and have been labelled in 4 different classes (Normal

Tissue, Tumour Tissue, Blood Vessels and Background)

obtaining a total of 87,722 in-vivo human brain samples.

B. Random Forest for Tumour Detection

The RF CPU implementation has been based on an existent

implementation called Ranger (RANdom Forest GeneRator)

[8]. The core of Ranger is implemented in C++ and uses only

standard libraries. Ranger has been verified using the

previously described database. K-Fold Cross-Validation

method has been employed for the evaluation with 10 folds.

Figure 1 presents the average of the evaluation metrics

(sensitivity, specificity and overall accuracy) for the different

classes performed to the dataset. These results outperform 99%

of overall accuracy for every class providing good

discrimination between the different classes.

Figure 1: Cross-validation result of the Ranger CPU implementation with a

forest of 500 trees

C. Random Forest Parallelization Analysis

Ranger has a good performance analysis in the different

bottleneck of RF algorithm. However, we identified multiple

bottleneck of Ranger that could be accelerated using GPUs. The

first bottleneck will accelerate the forest initialization. We

proposed to generate the learning set of different trees during

the initialization of the forest in order to construct multiple trees

by setting the learning set. It can be only used if Ranger option

generates a bootstrap learning set without replacement. The

principal bottleneck of Ranger is within the splitting process,

during the grow phase of a tree, to compute node impurity. Non-

terminal nodes need to splitting and is necessary to identify

which feature is better, between all possible candidate, and what

value to use for threshold. the problem of locating the best split

scale proportionally to the number of samples and the number

of possible features.

D. GPU Implementation

GPU kernels have been implemented in order to get a better

performance in the RF algorithm. In the bootstrap kernel, the

idea is that each block generates the training dataset for each

tree. The solution is a one dimensional grid where each block

generates the learning set of a tree (Figure 2). As training set is

generated randomly from dataset, cuRAND library has been

used. The most critical part that we identified is in the method

which generates a new split node, findBestSplit method. This

process is divided in three kernels: first kernel generates an

overall class count from the dataset, second kernel generates an

overall class count of the possible right child nodes and the last

kernel computes the decrease of impurity of the node. The

second kernel uses a two-dimensional grid where the number of

blocks in X axis is the number of possible features and Y axis

is fixed (Figure 3). The other kernels use a one-dimensional grid

with a fixed number of blocks in X axis.

Figure 2: Bootstrap one-dimensional grid layout of the bootstrap kernel for

nTree number of trees.

Figure 3: Two-dimensional grid layout of overall class count in the possible

right node child. We use the X coordinate for the feature response and the Y
coordinate assign a threshold.

III. EXPERIMENTAL RESULTS

This section presents the results achieved in the different

bottleneck solutions. Two different equipment have been used

for these tests, a laptop (Intel Processor i7-6700HQ and a

NVIDIA GPU GTX 960M) and a server (Intel Xeon Processor

E3-1225 v3 and a NVIDIA GPU Tesla K40). Figure 4 shows

the comparison between the results generated using both

platforms. Figure 5 shows the graphical comparison between

the results obtained using the laptop versus the server using

multiple possible features (3, 6, 12, 18 and 24) in the

findBestSplit kernel.

Figure 4: Testing bootstrap kernel comparison (GTX 960M vs. Tesla K40).

Figure 5: Testing findBestSplit kernel comparison with 74,180 samples in the

non-terminal node (laptop vs. IUMA’s server).

IV. CONCLUSIONS

This research work presents a comparison between two kernels

developed to accelerate the training process in the RF algorithm

using two different platforms employing in-vivo human brain

hyperspectral samples. The bootstrap kernel offers better

results in Tesla K40 than GTX 960M when the number of trees

is higher than 750. This result could depend of the number of

Stream Multiprocessor (SMX) available and the

synchronization time of the different blocks. However,

findBestSplit kernel has better performance in GTX 960M than

Tesla K40, due to this kernel has a grid with less variability than

the Tesla kernel, the number of blocks in Y axis is fixed and the

range of blocks in X axis is much smaller than the range in the

bootstrap kernel. Although the kernel is misusing resources of

Tesla K40, we have demonstrated that the findBestSplit kernel

works correctly and it has a better performance than CPU

comparison.

REFERENCES

[1] Li, Q., He, X., Wang, Y., Liu, H., Xu, D., & Guo, F. (2013). Review of
spectral imaging technology in biomedical engineering: achievements
and challenges. Journal of biomedical optics, 18(10), 100901-100901.

[2] Manolakis, D., Marden, D., & Shaw, G. A. (2003). Hyperspectral image
processing for automatic target detection applications. Lincoln
Laboratory Journal, 14(1), 79-116.

[3] Manolakis, D., & Shaw, G. (2002). Detection algorithms for hyperspectral
imaging applications. Signal Processing Magazine, IEEE, 19(1), 29-43.

[4] Lu, G., & Fei, B. (2014). Medical hyperspectral imaging: a review.
Journal of biomedical optics, 19(1), 010901-010901.

[5] A. Sahu et al., "Characterization of Mammary Tumors Using Noninvasive
Tactile and Hyperspectral Sensors," in IEEE Sensors Journal, vol. 14, no.
10, pp. 3337-3344, Oct. 2014.

[6] Gilles Louppe, “Understanding Random Forests”, Jul. 2014

[7] H. Fabelo, S. Ortega, R. Guerra, G. Callicó, A. Szolna, J. F. Piñeiro, M.
Tejedor, S. López, R. Sarmiento. A Novel Use of Hyperspectral Images
for Human Brain Cancer Detection using in-Vivo Samples. In
Proceedings of the 9th International Joint Conference on Biomedical
Engineering Systems and Technologies. 311-320 (2016).

[8] Marvin N. Wright and Andreas Ziegler, “Ranger: A Fast Implementation
of Random Forests for High Dimensional Data in C++ and R”, Aug. 2015.

