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RESUMEN  

Las unidades de procesamiento gráfico (GPUs) se han vuelto enormemente populares en el área 
de computación de alto rendimiento debido a su arquitectura de hardware masivamente paralela. Su 
arquitectura permite explotar abundantemente el paralelismo a nivel de datos mientras reduce el 
consumo de energía en la búsqueda, decodificación y emisión de instrucciones. Por esta razón, las 
GPUs son unas plataformas perfectas para acelerar las tareas de clasificación de imágenes 
hiperespectrales, las cuales son una tecnología emergente para el diagnóstico médico. Los sensores 
de imágenes hiperespectrales miden el brillo de los materiales dentro de cada área de píxeles usando 
un número muy grande de bandas formadas por longitudes de onda espectrales contiguas y 
explotando el hecho de que todos los materiales reflejan, absorben o emiten energía 
electromagnética, a longitudes de onda específicas, en patrones distintivos relacionados con su 
composición molecular. 

Los datos hiperespectrales se pueden procesar utilizando múltiples algoritmos de aprendizaje 
supervisados para detectar el tejido tumoral en cerebros humano. Random Forest, un método de 
aprendizaje automático que se ha popularizado en tareas de detección de objetos en la comunidad de 
la visión por computador, ha demostrado ser un buen candidato para clasificar las imágenes 
hiperespectrales. En general, la formación de un modelo de Random Forest con grandes conjuntos 
de datos supone una elevada carga computacional y dificulta la investigación científica, ya que el 
proceso requiere mucho tiempo de cómputo si no existe la disponibilidad de una plataforma de 
computación de alto rendimiento. 

El objetivo de este Trabajo de Fin de Máster es acelerar la fase de entrenamiento de Random 
Forest utilizando GPUs, partiendo de una implementación eficiente secuencial de este algoritmo. A 
lo largo del documento, se presentan múltiples cuellos de botella identificados en la fase de 
entrenamiento y la solución a estos cuellos de botella para acelerar los algoritmos. Las diferentes 
soluciones de este estudio han demostrado que la aceleración obtenida por las GPUs es 
prometedora para generar modelos en un tiempo más reducido, permitiendo la posibilidad de 
realizar este proceso en tiempo real en un futuro no muy lejano. 
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ABSTRACT 

Graphics Processing Units (GPUs) have become extremely popular in the high-performance 
computing area due to its massively parallel hardware architecture. This architecture allows to exploit 
abundant data level parallelism while reducing power consumption in the instruction fetching, 
decoding, and issuing. For this reason, GPUs are suitable platforms to accelerate the classification of 
hyperspectral images which are an emerging technology for medical diagnosis. Hyperspectral 
imaging sensors measure the radiance of the materials within each pixel area at a very large number 
of contiguous spectral wavelengths, exploiting the fact that all materials reflect, absorb or emit 
electromagnetic energy, at specific wavelengths, in distinctive patterns related to their molecular 
composition. 

Hyperspectral data can be processed using multiples different supervised learning algorithms to 
detect human brain tumour tissue. Random Forest, a machine learning method that has become 
popular in object detection tasks in the computer vision community, has proved to be a good 
candidate in order to classify hyperspectral images. Generally, training a Random Forest model on 
large datasets is computationally demanding and makes scientific research difficult since the process 
requires too much computational time if there is not available a high performance computing 
platform. 

The goal of this Master’s Thesis is focused in the Random Forest training phase acceleration 
using GPUs, starting from an efficiently sequential implementation of this algorithm. We present 
multiple bottlenecks identified in the training phase and a solution for these bottlenecks in order to 
accelerate the algorithms. The different bottleneck solutions achieved in this research study have 
demonstrated that GPU acceleration is promising in order to generate models in a shorter time, 
giving the possibility to perform this process in real-time in a close future.  
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CHAPTER 1:  INTRODUCTION 

1.1 INTRODUCTION 

Hyperspectral images are an extension of the concept of digital image. This kind of images 
progressively increases the number of spectral bands collected by the imaging instrument and the 
spectral resolution too (modern instruments not only have more bands, but the bands are also 
narrower or closer to each other). Particularly, hyperspectral images comprise hundreds of narrow 
spectral bands. Due to this sampling strategy, hyperspectral images provide much more information 
about the captured scene than traditional solutions based on panchromatic or multispectral 
approaches. 

One of the major benefits from such technology is likely to be in the removal of brain tumours. 
There are several reasons for this. Brain tumours, more than any other cancers, can resemble the 
normal surrounding brain making them difficult to differentiate. Unlike many tumours, they 
infiltrate the surrounding tissue and thus their borders are indistinct and difficult to identify. The 
surrounding brain is also very eloquent and there is no redundancy as is seen in many other organs 
where it is normal to remove the tumour with a surrounding rim of healthy tissue. This is not 
possible in the brain where it is essential to identify accurately the borders between normal and 
disease. Although malignant primary brain tumours in adults occupy the 13th place in frequency of 
all cancers, due to their particularly poor prognosis they are the fifth most common cause of cancer 
death in the under 65-year-old population. Moreover, they are the second most common cancer in 
children and the most common cause of cancer death in children. 

Currently, the main tool for differentiating normal from malignant tissue remains the human 
naked eye. Other techniques have been developed but none has succeeded in reliable tissue 
differentiation. Neuronavigation is plagued by brain shift, ultrasound is highly operator dependent 
and intraoperative MRI (Magnetic Resonance Imaging) fails to provide real time images obtaining 
just an occasional snapshot during surgery. Under these circumstances, HSI (Hyperspectral Imaging) 
arises as a potential solution that allows a precise detection of the edges of the malignant tissues in 
real time, while assisting guidance for diagnosis during surgical interventions and treatment. 
Moreover, the cost associated with hyperspectral imaging instrumentation is significantly lower than 
the aforementioned techniques as it is based on conventional optical imaging technology. HSI 
supposes a non-contact, non-ionizing and minimal-invasive sensing technique based on registering 
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extremely small wavelengths (normally in the nanometre range) of the tissues in order to determine 
their histological characteristics. 

Since HSI collects high amount of data, it is needed the utilization of high-performance 
computer platforms where the processing algorithms are implemented. One of the possibilities to 
address this issue is using a high-performance computer together with a Graphical Processing Unit 
(GPU) where the algorithms can be highly parallelized in order to obtain the results of the 
processing in real time.  

1.2 OBJECTIVES 

The main goal of this project is to implement the Random Forest (RF) algorithm in a GPU so as 
to accelerate the training and the classification process of hyperspectral images. The experiments 
performed in this project are framed in the context of a bioengineering research project where 
hyperspectral images are used to distinguish between tumour and normal tissue during neurosurgical 
operations. In this application, real-time is highly necessary since the neurosurgeons need to have 
the results of the processing during the time framework of the surgery.  

Although this project is focused in this concrete application, the work performed can be 
extrapolated to other fields where the acceleration of the RF algorithm will be necessary.   

1.3 CONTEXT AND MOTIVATIONS 

The main motivation to carry out this project is the European Project HELICoiD 
“HypErspectral Imaging Cancer Detection” (FP7-618080) from the Institute for Applied 
Microelectronics (IUMA) at the University of Las Palmas de Gran Canaria. This project is 
coordinated by Dr. Gustavo Marrero Callicó as the principal investigator (PI), has the main goal of 
applying hyperspectral imaging techniques in order to accurately identify the margins of malignant 
tumours during surgical procedures in real-time. The HELICoiD project develops an experimental 
intraoperative setup based on non-invasive hyperspectral cameras connected to a platform running a 
set of algorithms capable of discriminating between healthy or tumour tissues.  

On the other hand, to understand the context of this project it is necessary to know that the 
Integrated System Design Division, DSI, from IUMA is specialized in the treatment of hyperspectral 
images. DSI team has already undergoing projects such as: 

CCSDS Lossless Compression IP-core Space Applications (ITT-No. AO/1-
8032/14/NL/AK) 

The main objective of this ITT (invitation to Tender) is to implement two separate IP-cores 
corresponding to the CCSDS 123 and CCSDS 121 standards respectively. The former corresponds 
to a Lossless Multispectral and Hyperspectral Image Compression architecture, while latter is a 
Lossless Data Compressor. Both IP-cores will be mapped for space qualified FPGAs (from 
Microsemi and Xilinx) and also for radiation hardened standard cells (180 nm ATMEL 
ATC18RHA). 

REBECCA: Resilient Embedded Electronic Systems for Controlling Cities under 
Atypical Situations (TEC2014-58036-C4-4-R) 

REBECCA is oriented to the Smart City paradigm. This topic brings up important challenges in 
different areas related with the sustainable development of the city and the provision of services to 
citizens. Among these areas, REBECCA focuses on urban security for large public spaces and/or 



Implementation of Hyperspectral Image Classification Algorithms for Brain Tumour Detection using Graphical Processing Units (GPUs) 

 

 

  

Page 17 of 84 

 

celebration of major events. In this context, REBECCA works on the design of a platform for 
sensing and distributed computing of visible and multi-hyper-spectral image processing. 

ENABLE-S3: European initiative to Enable Validation for Highly Automated Safe and 
Secure Systems 

ENABLE-S3 is a strongly industry-driven project. It will pave the way for accelerated application 
of highly automated and autonomous systems in the mobility domains automotive, aerospace, rail, 
maritime and health, through provision of highly effective test and validation methodology and 
platforms. ENBALE-S· will help the European industry to gain leadership in the strategic field of 
autonomous systems due to faster development and test of new products. 

HYLOC: Multispectral and Hyperspectral Image Compression System 

The objective of this industrial project is the implementation of a prototype suitable for its 
implementation on a space-qualified FPGA for the compression of multispectral and hyperspectral 
images based on the standard CCSDS-123. The effect of the several configuration parameters on the 
compression efficiency and hardware complexity is taken into consideration to provide flexibility in 
such a way that the implementation can be adapted to different applications scenarios. 

1.4 MEMORY ORGANIZATION 

This memory is structured as follows: 

Chapter 1: The first chapter of this document consists on a brief introduction to the research 
work that will be described in this document. 

Chapter 2: In this chapter, it is presented the material employed in this work. First, it will 
introduce the hyperspectral image and analysis methods where we will focus in medical applications 
with special mention to the HELICoiD project. Later, this chapter introduces the supervised pixel-
wise algorithms which will be used in order to classify hyperspectral images, detailing the Random 
Forest (RF) algorithm. Finally, we will introduce the General-Purpose computing on Graphics 
Process Units (GLGPU) and the NVIDIA’s CUDA Architecture. 

Chapter 3: This chapter is dedicated to explain how the dataset used in this work is extracted . 
Here we explain the HELICoiD demonstrator that it is used to extract a hyperspectral image 
database so as well neurosurgeons and neuropathologists work to generate the ground truth for the 
training of the supervised algorithm. 

 Chapter 4: In this part of the document, we explain the different parallel implementations of RF, 
both the CPU and the GPU implementations. 

Chapter 5: This chapter presents the results obtained in the acceleration performed in the training 
part of the Random Forest algorithm. 

Chapter 6: The last chapter sums up the conclusions achieved during the growth of this research 
work. Also, the on-going work is described. 
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CHAPTER 2:  RELATED WORK 

2.1 INTRODUCTION 

This chapter presents a brief description of the concepts of hyperspectral imaging and its use in 
the medical field. Furthermore, the classification algorithm selected for the analysis of this kind of 
images is detailed as well as the platform where this algorithm has been implemented.   

About the selected classification algorithm, its operation is detailed and special attention will be 
given to the training phase of the algorithm that is where this project will focus. 

Finally, the platform selected is NVIDIA K40, a CUDA GPU.  We will explain how the CUDA 
platform (architecture and memory hierarchy) works and we will focus on the K40’s architecture. 

2.2 HYPERSPECTRAL IMAGING  

Spectral imaging, also known as imaging spectroscopy, refers to the technology that integrates 
conventional imaging and spectroscopy methods to obtain both spatial and spectral information of 
an object [1]. Hyperspectral imaging sensors measure the radiance of the materials within each pixel 
area at a very large number of contiguous spectral wavelength bands [3] exploiting the fact that all 
materials reflect, absorb, or emit electromagnetic energy, at specific wavelengths, in distinctive 
patterns related to their molecular composition [2]. The basic task underlying many HSI applications 
is to identify different materials based on their reflectance spectrum. In this respect, the concept of a 
spectral signature, which uniquely characterizes any given material, is highly attractive and widely 
used [2].   

As a result of spatial and spectral sampling, hyperspectral imaging (HSI) sensors produce a three-
dimensional (3D) data structure (with both spatial-spectral components), referred to as a hypercube. 
Figure 2-1 shows an example of such a data cube [3]. If we extract all pixels in the same spatial 
location and plot their spectral values as a function of wavelength, the result is the average spectrum 
of all the materials in the corresponding ground resolution cell. In contrast, the values of all pixels in 
the same spectral band, plotted in spatial coordinates, result in a grayscale image depicting the spatial 
distribution of the reflectance of the scene in the corresponding spectral wavelength [3]. 
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Figure 2-1: Basic data-cube structure (centre) in hyperspectral imaging, illustrating the simultaneous spatial and spectral character of 
the data. The data cube can be visualized as a set of spectra (left), each for a single pixel, or as a stack of images (right), each for a 

single spectral channel. 

To acquire a 3-D data cube, spatial (2-D) and wavelength as a third dimension, a spectral imaging 
system needs to be employed. The typical hardware framework of a typical spectral imaging system 
generally consists of four parts: collection optics or instruments, spectral dispersion element, 
detector, and system control and data collection module [1]. The spectral dispersion element is the 
heart of the system that enables the separation of the light into different wavelengths.  

Although hyperspectral image analysis methods have been intensively investigated in the remote 
sensing area, their development and application has been extended to other fields. For instance, in 
recent years, hyperspectral imaging has gained a wide recognition as a non-destructive and fast 
quality and safety analysis and assessment method for a wide range of food products [4]. Another 
important application of hyperspectral imaging technologies is that of agriculture, and in particular, 
precision agriculture. Precision agriculture can be broadly defined as the use of observations to 
optimize the use of resources and management of farming practices [5].  Hyperspectral Imaging is 
an emerging technology for clinical diagnosis. Some studies have proven that interaction between 
electromagnetic radiation and tissue carries useful information for diagnosis proposals [6]. 

2.2.1 Hyperspectral Imaging for Cancer Detection 

Hyperspectral imaging is an emerging imaging modality for medical applications, especially in 
disease diagnosis and image-guided surgery [6]. This technology shows some advantages compared 
to the currently techniques employed for cancer detection, such as Magnetic Resonance (MR), 
Computed Tomography (CT), Ultrasound (US) and Positron Emission Tomography (PET). MR 
exposes patients to potentially harmful radiation, requires a trained operator and is expensive. US 
suffers from the disadvantage of having low image contrast. PET and CT are also expensive and 
uses high doses of radiation. Since most of these methods are costly and require trained operators, 
patient access to these important life-saving measures is limited. The long-term goal of hyperspectral 
imaging in cancer detection is to develop a simple-to-use, non-invasive, and risk-free tool that will 
provide early and affordable detection of potentially life threatening malignant tumours. This 
technology can be use both for screening enhancement and for quantitative analysis of tissue [7]. 

Some research studies that employ hyperspectral imaging as diagnosis tool are show on [6]. The 
differences between the different research works are the specimens used for each study, the kind of 
the analysed disease and the acquisition technique employed. 

The study of in-vivo tissue allows providing a non-invasive disease diagnosis and an automatic 
guidance tool for surgery. After a cancer resection surgery, a pathology report notes that the surgical 
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margin is one of the following three types: clear, positive, or close. In case of clear margin, normal 
tissue surrounds cancer cells. In case of positive margin, cancer cells appear on the margins, which 
would lead to an additional surgery to remove the remaining cancer tissue. It is reported that 20-
50% of breast cancer surgeries performed require a further surgery to remove remaining cancer 
tissues. In the research work proposed on [8] a method for improving the detection of breast cancer 
positive margins during surgery has been developed in order to prevent the need for additional 
surgeries by using hyperspectral imaging and image classification techniques. The results of this 
research study have found that examining ex-vivo breast cancer hyperspectral images tagged by a 
pathologist, the developed classification approach is shown to achieve a sensitivity of about 98% 
and a specificity of about 99%.  

Although few studies explain the basic principles and instrumental systems for in-vivo HSI 
system in the biomedical field [9], only limited work deals with in-vivo detection of gastrointestinal 
(GI) cancer. In one of them [10], by employing rigid endoscopy, the authors propose a novel pre-
processing stage to detect cancer cells in the larynx, overcoming several problems related with image 
interference(s): i) mis-registration of single images in a HS cube due to patient heartbeat; ii) image 
noise; and iii) specular reflections. Another interesting study in the field of upper GI endoscopy can 
be found in [11]. In this work, the authors present the calibration and test results obtained by mean 
of a HS reflectance and flexible video endoscope setup for the in-vivo GI cancer detection. 

On the histological field, some studies have employed this technology for quantitative analysis of 
different diseases from in-vitro samples. On [8] microscopic hyperspectral imaging technology 
instead of traditional method has been employed to evaluate the therapeutic effects of 
Erythropoietin (EPO) on diabetic rats, founding that spectral imaging can contribute to significant 
quantitative analysis of such kind of diseases. HSI can also improve the detection of malignancy 
from histopathological GI samples, by removing subjectivity and intra/inter-observer variations 
[12]. In a recent work, microscopic HSI can distinguish between normal and cancerous gastric cells 
with 95% accuracy [13]. Maggioni et al [14] presented a classification technique for discriminating 
normal, precancerous, and cancerous colonic lesions. HS data are collected in the range of 440-700 
nm, while setting the microscopic magnification factor to be 400x. A 97.1% classification accuracy 
has been reported when nuclei were extracted from all the samples. Chadded et al [15] performed 
classification of multispectral colon biopsy images, achieving reasonable classification accuracy in 
discriminating different types of colon tissues such as carcinoma, Intraepithelial Neoplasia, and 
Benign Hyperplasia. Additionally, Akbari et al [16] proposed a method of colonic cancer detection 
by using a broad band light source to illuminate the tissue slide and a HS camera to capture 
wavelength bands from 450-950 nm. Using Support Vector Machine (SVM) to classify the given 
tissues, 98.3% specificity and 96.2% sensitivity was observed for colon cancer data set. 

The use of HSI can be mainly divided in the detection of cancer and other pathologies. 
Regarding with cancer detection, this technique has been mainly used in the detection of cervical 
cancer (both in-vivo [17][18] and in-vitro [19], for the detection of breast cancer (both in-vivo [20] 
and in-vitro [21], for the detection of skin cancer (both in-vivo [22] and in-vitro [23], and for the 
detection of head and neck cancer (both in-vivo [24][25] and in-vitro [16]. Regarding with other 
pathologies, HSI has been also used for the study of heart and circulatory pathology (both in-vivo 
[26] and in-vitro [27], and for the study of retinal diseases [28]. Recently, this technique has been 
proven to be of special relevance to guide the surgeons in different operations as could be the 
mastectomy [29], the gall bladder surgery [30], the renal surgery [31] and the abdominal surgery [32]. 
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2.2.2 HELICoiD Project 

In addition to radiotherapy and chemotherapy, surgery is one of the major treatment options for 
brain tumours [33]. However, because brain tumours infiltrate and diffuse into the surrounding 
normal brain, the surgeon’s naked eye is often unable to accurately distinguish between the tumour 
and normal brain tissue. Inevitably, tumour tissue is either unintentionally left behind during surgery 
or too much normal brain tissue is taken out. Studies have shown that tumour tissue left behind 
during surgery is the most common cause of tumour recurrence and is a major cause of morbidity 
and mortality [34][35][36]. On the other hand, over-resection of brain tumour tissues has also been 
shown to cause permanent neurological deficits that affect patients’ quality of life [37].    

Intra-operative neuro-navigation, intra-operative Magnetic Resonance Imaging (iMRI) and 
fluorescent tumour markers such as 5-aminolevulinic acid (5-ALA) have been developed as adjuncts 
to surgery to help with brain tumour delineation. Although these adjuncts have improved the 
accuracy of brain tumour resections, they have a number of limitations. Neuro-navigation (Figure 
2-2) is rendered inaccurate at locating tumour margins due to brain shift and changes in tumour 
volume that occurs during resections [38][39]. 

  

Figure 2-2: Image-guided stereotaxis system and screen capture used to locate the position of a tumour marker in a MRI 

Intra-operative Magnetic Resonance Imaging was developed as a solution to intra-operative brain 
shift as it’s capable of providing near real time tumour margin mapping. However, this has been 
found to have poor spatial resolution, to largely extend the surgery time and it is very expensive [40].  

Fluorescent tumour markers such as 5-aminolevulinic acid (5-ALA) are excellent at identifying 
tumours but can only be used for high grade tumours, produce important knock-on effects and are 
poor at defining tumour margins mainly due to the diffuse nature of brain tumours [41][42]. 

Despite the improvement in the accuracy of brain tumour resections, neurosurgery is still unable 
to accurately define brain tumour margins. Under these circumstances, hyperspectral imaging arises 
as a potential solution that allows a precise detection of the edges of the malignant tissues in real 
time, while assisting guidance for diagnosis during surgical interventions and treatment. Moreover, 
the cost associated with hyperspectral imaging instrumentation is significantly lower than the 
aforementioned techniques as it is based on conventional optical imaging technology. Hyperspectral 
imaging supposes a non-contact, non-ionizing and minimal-invasive sensing technique based on 
registering extremely small wavelengths (normally in the nanometre range) of the tissues in order to 
determine their histological characteristics. 
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Figure 2-3: Intra-operative Magnetic Resonance Imaging system 

  

Figure 2-4: Fluorescence-guided surgery using 5-Ala system 

HELICoiD (HyperEspectraL Imaging Cancer Detection) is a European collaborative project 
funded by the Research Executive Agency (www.helicoid.eu), through the Future and Emerging 
Technologies (FET-Open) programme, under the 7th Framework Programme of the European 
Union. It is formed by four universities, two university hospitals and three leading industry partners. 
The main goal of this project is to efficiently differentiate between healthy and diseased tissues and 
so lead to better surgical removal using the aforementioned hyperspectral images.  

Starting with some specific types of cancers, this project tries to generalize the methodology to 
discriminate between healthy and malignant tissues in real-time during surgical procedures. Using 
the hyperspectral signatures of the healthy tissues and the same tissues affected by cancer, a model 
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of how cancer affects to the hyperspectral signature is derived. The research has started with the 
challenging task of brain cancer detection. A precise resection of the gliomas will minimize the 
negative effect of removing brain cells while assuring an effective tumour resection. As cancer 
supposes a change in the cellular physiology, it should be detected as a change in the hyperspectral 
signature. This project tries to determine if there is a certain pattern that could be identified as a 
cancer hyperspectral signature. This information is provided, through different display devices to the 
surgeon, overlapping normal viewing images with simulated colours that indicates the cancer density 
in a certain tissue area exposed during every instant of the surgical procedure.  

A high-efficiency hardware/software prototype has been developed with the aim of recognizing 
cancer tissues on real time. The processing of hyperspectral images requires a huge amount of 
computation due to its natural high dimensionality. Instead of the typical three bands found in 
normal images (RGB), hyperspectral images can have more than one thousand bands.  

This master thesis has the mail goal to accelerate part of the algorithms used in the HELICoiD 
project to classify the hyperspectral images using NVIDIA GPUs for the computation of the brain 
cancer presence/absence in real-time. 

2.3 CLASSIFICATION ALGORITHM FOR HYPERSPECTRAL IMAGE 

ANALYSIS 

Nowadays, machine learning is used in many research fields because it offers automated 
procedures that it allows to predict a behaviour based on multiples past observations. The purpose 
of this work is to use the machine learning for classification of hyperspectral images using 
supervised algorithms. 

2.3.1 Supervised pixel-wise algorithms 

Data analysis and machine learning have become an integrative part of the modern scientific 
methodology, offering automated procedures for the prediction of a phenomenon based on past 
observations, unravelling underlying patterns in data and providing insights about the problem. 
However, it must to be considered as a methodology and not as a black-box tool because it is 
necessary a rational thought process that is dependent on the problem under study. In particular, the 
use of algorithms should ideally require a reasonable understanding of their mechanisms, properties 
and limitations, in order to better understand and interpret their results ¡Error! No se encuentra el 
origen de la referencia.. 

Supervised pixel-wise algorithms are a specific branch from machine learning whose purpose is 
to use a set of observations, the training set, to find a decision function. The main feature is that it is 
necessary to have a labelled training data, therefore, the training data consists of an input object 
(usually a feature vector) and a desired output value. 

There are two kinds of supervised learning: regression and classification. The main difference 
between both is that regression works with continues values, for example predicting fuel 
consumption of a car, while classification works with discrete values. 
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2.3.1.1 Random Forest (RF) 

Random Forest (RF) is a supervised learning method that can be applied to solve classification or 
regression problem. It is constituted by a combination of tree predictors such that each tree depends 
on the values of a random vector ¡Error! No se encuentra el origen de la referencia.. This 
method allows quick prediction but requires a long training phase when the dataset is large. Random 
Forest became recently popular in the computer vision community thanks to the great result that 
this method generates. One of the most famous applications of Random Forest is the recognition of 
human poses in real time to the Microsoft Kinect system [47]. 

Historically, the earliest mention of ensemble of decision trees is due to Kwok and Carter in 1990 
but L. Breimann was one of the earliest to show, theoretically and empirically, that aggregating 
multiple versions of an estimator into an ensemble can give substantial gains in accuracy.  

The main idea behind Random Forests is to generate many decision trees from the same dataset 
thus it is significantly improved in classification result accuracy by the vote for the most popular 
class realized by the trees [43]. The rationale behind this method is that the combination of learning 
models increases the classification accuracy. 

 

Figure 2-5: Random Forests representation 

A decision tree consists of a hierarchy of questions that are used to map a multi-dimensional 
input value to a scalar output. The scalar output can be a real value (regression) or a class label 
(classification). In this paper, we focus on decision trees and forests for classification. 

When the output space is a finite set of values, like in classification, where 𝑦 = {𝑐1, 𝑐2, … , 𝑐𝑗}, 

another way of looking at a supervised learning problem is to notice that Y defines a partition over 
the universe Ω, that is 

Ω =  Ω𝑐1
∪ Ω𝑐2

∪ … ∪  Ω𝑐𝑗
   (2-1) 
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where Ω𝑐𝑘 is the set of objects for which Y has value 𝑐𝑘. Thus, classifier φ can also be regarded as 

a partition of the universe Ω and it defines an approximation �̅� of Y. This partition however is 
defined on the input space χ rather than directly on Ω, that is 

χ =  χ𝑐1

φ
∪ χ𝑐2

φ
∪ … ∪  χ𝑐𝑗

φ
   (2-2) 

where χ𝑐𝑘

φ
 is the set of description vectors 𝑥 ∈ χ such that 𝜑(𝑥) = 𝑐𝑘. 

    In this terms, a decision tree can be defined as a model 𝜑: χ → y represented by a rooted tree, 

where any node 𝑡 represents a subspace χ𝑡 ⊆  χ of the input space (see Figure 2-6) ¡Error! No se 
encuentra el origen de la referencia.. 

 
Figure 2-6: Decision tree example 

 

As we could see in Figure 2-5 and it was explained above, Random Forest is a collection of 

classifiers that are structured as decision trees. The 𝐾 decision trees in a random forest are trained 

independently and the output values for a set of descriptions vectors 𝑥 ∈ χ are collected from all 
reached leaves in the decision trees and combined to generate a single classification. Common 
methods for generate a single classification are the majority defined by 

𝑃(𝑐|𝑥) =  ∑ 𝑃𝑘(𝑐|𝑥)

𝐾

𝑘=1

 (2-3) 

and the average of all probability distributions defined by 

𝑃(𝑐|𝑥) =
1

𝐾
∑ 𝑃(𝑐|𝑙𝑘(𝑥))

𝐾

𝑘=1

 (2-4) 

where 𝑙𝑘(𝑥) is the leaf node of the k-tree that has been reached when the classification is finished.  

2.3.1.1.1 Random Forest Training 

A characteristic of RF is that it works with random decision trees and the key differences 
between a decision tree and a random decision tree is the training phase. The idea of RF is to 
training multiple trees on a random subset of the dataset and a random subset of features. 
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A learning set of 𝐿 consists of data {(𝑦𝑛, 𝑥𝑛), 𝑛 = 1, . . , 𝑁} where the 𝑦’𝑠 are class labels in a 
classification problem, albeit it could be a numerical response in a regression problem. In RF, we are 
given a sequence of learning sets {𝐿𝐾} each one consisting of 𝑁 independent observations from the 
same underlying distribution as 𝐿. The main idea is to use the {𝐿𝐾} to get a better predictor than the 
single learning set predictor 𝜑(𝑥, 𝐿), working with a sequence of predictors {𝜑(𝑥, 𝐿𝑘)} ¡Error! No se 
encuentra el origen de la referencia.. 

When we are training the RF, usually, we have a single learning set L and for this reason we use 
bootstrapping (random sampling with replacement) and take repeated bootstrap samples {𝐿(𝐵)} from 
L, and form a sequence of decision trees {𝜑(𝑥, 𝐿(𝐵))}. This procedure is called bagging. 

With the bootstrap sample, the next step in each node of the tree is the random selection of 
features. It is necessary to remember that 𝑥 is a feature vector with M input variables or features, i.e 
𝑥𝑛 = {𝑓1, 𝑓2, … , 𝑓𝑀}. For each node of the tree, 𝐹 ≪ 𝑀 features are randomly selected and thus each 

node tree trains with a random subset of features 𝑥𝑛
𝑡  . 

Those previous steps for the training of each tree is necessary because the classification in RF is 
the result by the votes of the trees and, for this reason, it is necessary that the decision trees have the 
lowest possible correlation, remembering that the procedure of random selection of feature is 
realized in each node of each tree. 

A common process to train a decision tree is Top-Down Induction of Decision Trees (TDIDT) 
which consists of two training phases ¡Error! No se encuentra el origen de la referencia.: 

1. Iterative growing the decision tree until a stopping criterion is reached 

a) Selecting a leaf node that is not yet pure. 

b) Selecting the best test that minimizes the impurity score. 

c) Splitting the leaf node into left and right according to the selected test. 

d) Continuing with a). 

2. Prune the decision tree using a validation set. 

In contrast to normal decision trees, in RF the random decision trees are developed to its 
maximum expansion, not pruned after training as they are less likely to overfit [43]. Breiman’s 
random forests use Classification And Regression Tree (CART) [51] as tree growing algorithm [43] 
and are restricted to binary trees for reasons of simplicity. Whether the decision tree is balanced 
depends on the dataset and the impurity score function used for training. 

2.3.1.1.2 Error estimation 

Such as we could see above, RF is a bagged model, the trees are repeatedly fit to bootstrapped 
subsets of the observations, and in this kind of models there is a very simple way to estimate the test 
error without the need to perform cross-validations or the validation set approach. Thereby, the 
classification or regression error in RF is defined by the OOB (out-of-bag) concept. In RF, on 
average, each tree bagging uses two-thirds of the observations, the remaining third will not be used 

in the comments off-exchange (OOB). We can predict the response for the 𝑖𝑡ℎ observation using 
each of the trees in which that observation was OOB. In order to obtain a single prediction for the 

𝑖𝑡ℎ observation, we can take a majority vote in classification or we can average these predicted 
responses for regression. An OOB prediction can be obtained in this way for each of the 𝑛 
observations, from which the overall OOB MSE (for a regression problem) or classification error 
(for a classification problem) can be computed. 
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The resulting OOB error is a valid estimate of the test error for the bagged model, since the 
response for each observation is predicted using only the trees that were not fit using that 
observation.¡Error! No se encuentra el origen de la referencia.¡Error! No se encuentra el 
origen de la referencia.. 

2.3.1.1.3 Split selection 

When we develop a classification decision tree, it is necessary to find the best split value in non-
terminal nodes, the root and other internal nodes. The splitting is performed based on measures of 
the degree of impurity of the child nodes. 

The Gini index has the purpose to evaluate the measure of impurity degree and the attribute that 
provides the largest reduction in impurity is chosen to split the node [47].  In the Gini index the 
impurity of the child nodes is being calculated by: 

𝐺𝐼𝑁𝐼(𝑡) =  ∑ 𝑃(𝑡|𝑐)(1 − 𝑃(𝑡|𝑐)) = 
𝑐∈𝑦

∑ 𝑃(𝑡|𝑐) − 𝑃(𝑡|𝑐)2 = 1 − ∑ 𝑃(𝑡|𝑐)2 
𝑐∈𝑦𝑐∈𝑦

 (2-5) 

where c belongs to set of classes 𝑦 = {𝑐1, 𝑐2, … , 𝑐𝑗} and 𝑃(𝑡|𝑐) is the relative frequency of class 

c in the node t ¡Error! No se encuentra el origen de la referencia.. 

2.4 GPUS FOR GENERAL-PURPOSE COMPUTING 

For 30 years, the most important method for improving the performance of computing devices 
has been to increase the speed at which the processor's clock operated. However, in recent years, 
manufacturers have been forced to look for alternatives because of heat and power restrictions as 
well as a rapidly approaching limit to transistor size ¡Error! No se encuentra el origen de la 
referencia.. For this reason, the two main PC processor manufacturers, Intel and AMD, have had 
to a different approach, adding more cores to processors and trying to increase CPU clock rates and 
extract more instructions per clock through instruction-level parallelism. 

Due to the limitations of the single-core processors, the use of last generation massively parallel 
hardware architectures such as Graphics Processing Units (GPUs) has become extremely popular in 
the high-performance computing area ¡Error! No se encuentra el origen de la referencia.. 

The GPU design philosophy (many-cores architecture) allows to perform better than a CPU 
(multi-core architecture). In a GPU, the idea is to optimize the throughput of many threads running 
in parallel, so that if any of them is waiting for the completion of an operation, it is assigned new 
work and it does not remain idle. However, the CPU provides better performance for sequential 
solutions. 

As a result of the explained above, in a CPU the optimization is based in a complex logic control 
for the parallel execution of sequential code and the uses of caches to reduce latencies while a GPU 
uses a simpler control and it uses smaller caches to help to maintain the bandwidth defined by all the 
parallel threads [54]. 

Since 2001, GPUs use shaders programmable which are the data processing units in GPUs. 
Generally, each GPU has many shaders and with them the GPU can be programmed by aiming to 
increase the GPU works to process the data graphics in parallel. On a modern GPU, shader number 
or often called the Stream Processor (for stream input and output), has reached the hundreds or 
even thousands. GPU calculation abilities can reach Teraflops. The comparison of the GPU and the 
CPU is show in Table 2-1 and a schematic comparison in Figure 2-7. 
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GPUs are based in the single instruction, multiple data (SIMD) architecture. This architecture 
allows exploiting abundant data level parallelism while reducing power consumption in instruction 
fetch, decode, and issue. Basically, it means that this architecture can process elements that perform 
the same operation on multiple data points simultaneously, there are simultaneous (parallel) 
computations, but only a single process (instruction) at a given moment. SIMD capability is widely 
adopted in general-purpose architectures and we can see in Cell Broadband Engine and Many 
Integrated Cores [58]. For instance, most modern CPU designs include SIMD instructions in order 
to improve the performance of multimedia use. 

Nowadays, GPUs are devices presents in any PC. They perform basic task for the CPU such as 
rendering an image in memory and then displaying that image onto the screen ¡Error! No se 
encuentra el origen de la referencia.. For this reason, GPUs are one of the most popular devices 
for general-purpose computing and the evolution of them has experienced a great growth thanks to 
the great demand of tasks in which they can be applied. 

  CPU GPU 

Parallelism through time multiplexing Parallelism through space multiplexing 

Emphasis on low memory latency Emphasis on high memory throughput 

Allow wide range of control flows + control 
flow optimization 

Optimized for data parallel, throughput 
computation 

Very high clock speed Mid-tempo clock speed 

Peak computation capability low Higher peak computation capability 

Off-chip bandwidth lower Higher off-chip bandwidth 

Handle sequential code well Requires massively parallel computing 

CPU are great for task parallelism GPU are great for data parallelism 

Table 2-1: Comparison between CPU and GPU 

 
Figure 2-7: CPU vs GPU schematic comparison 

2.5 CUDA OVERVIEW 

NVIDIA unveiled the first GPU with CUDA architecture in November 2006, the Geforce 8800 
GTX. With this GPU, NVIDIA intended this new family of graphics processors to be used for 
general-purpose computing ¡Error! No se encuentra el origen de la referencia.. 

Driven by the insatiable market demand for real-time, high-definition 3D graphics, the GPU has 
evolved into a highly parallel, multi-thread, many core processors with tremendous computational 
power and very high memory bandwidth ¡Error! No se encuentra el origen de la 
referencia.¡Error! No se encuentra el origen de la referencia.[59] as illustrated on Figure 2-8. 
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Figure 2-8 Memory Bandwidth for the CPU and GPU 

2.5.1 Architecture 

The CUDA performance and scalability lies in the simple partitioning of a computation into fixed 
size blocks of threads in the execution configuration. CUDA allows to efficiently solve many 
problems, parallelizing the problem to a scale that CPUs cannot do.  

The CUDA architecture is built around an array of multithreaded streaming multiprocessors, 
known as SMs, in a NVIDIA GPU. The SM is a common architectural building block that a GPU 
replicate repeatedly. The number of SMs of CUDA GPUs can vary from a generation to another. 
The data-parallel computing kernels in an application are off-loaded for concurrent execution on the 
GPU device, while the remainder of the application is executed on the CPU host [55][59]. An 
example of what has just been explained, can be observed in Figure 2-9, where the CUDA 
programming model assumes that the CUDA threads are executed on a physically separate device that 
operates as a coprocessor to the host running the C program. For example, this is the case when the 
kernels execute in a GPU and the rest of the code is executed on a CPU.  

As we saw above, each graphics card consists of several SMs and in each SM is attached many 
Stream Processors (SPs) which share instructions cache and control logic. The original 9800 GTX 
had 8 SMs, with 16, SPs, giving a total of 128 SPs ¡Error! No se encuentra el origen de la 
referencia.. In the CUDA architecture this SPs are known as CUDA Cores. These multiprocessors 
are designed to execute hundreds of threads concurrently. To manage such a large amount of 
threads, it employs a unique architecture called SIMT (Single-Instruction, Multiple-Thread).  

The SIMT architecture is akin to SIMD vector organizations in that a single instruction controls 
multiple processing elements. A key difference is that SIMD vector organization exposes the SIMD 
width to the software, whereas SIMT instructions specify the execution and branching behaviour of 
a single thread. In contrast with SIMD vector machines, SIMT enables programmers to write 
thread-level parallel code for independent, scalar threads, as well as data-parallel code for 
coordinated threads [55]. 
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In the SIMT architecture, the multiprocessor creates, manages, schedules and executes treads in 
groups of 32 parallel threads called warps. Every thread of a warp starts together at the same 
program address, but each thread has his own instruction address counter and register state and are 
therefore free to branch and execute independently.  When a multiprocessor must use one or more 
blocks to execute, it partitions them into warps and each warp gets scheduled by a warp scheduler 
for execution [55]. 

 

Figure 2-9 Execution of a CUDA Program (Heterogeneous Programming) 

A warp contains threads of consecutive, increasing thread IDs with the first warp containing 
thread 0.  When we are working using CUDA, we have to understand that the index of a thread and 
its thread ID relate to each other in a direct way. The index of a thread is representing by a threadIdx, 
which is a 3-component vector and, for this reason, the thread can be identified using one-
dimensional two dimensional, or three-dimensional thread index, forming a one-dimensional, two-
dimensional, or three-dimensional block of threads, called a thread block. This provides a natural 
way to invoke computation across the elements in a domain such as a vector, matrix, or volume. 

2.5.2 Memory Hierarchy 

The CUDA threads dispose multiple memory which can be accessed during their execution 
process as illustrated in Figure 2-10. Each thread has private local memory, only used by this thread. 
Each block has shared memory visible to all threads of the block and with the same lifetime as the 
block. The global memory can be accessed by all threads, and it is the biggest memory that the GPU 
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device has. There are another two additional read-only memory spaces that can be accessed by each 
of the threads: the texture memory and the constant memory spaces. Every memory space include 
the global, constant and texture memory spaces and are optimized for non-similar memory 
functions [59][55]. 

 

Figure 2-10 Memory Hierarchy 

2.5.2.1 Global Memory 

Global memory is the biggest off-chip memory, and basically all data resides in global memory 
during a kernel execution. This memory is very interesting because it is writable from both the GPU 
and the CPU. It can be accessed from any device on the PCI-E bus ¡Error! No se encuentra el 
origen de la referencia.. 

 As discussed above, it can be accessed by all threads but the latency of accessing is hundreds of 
cycles greater than the rest of memories. All the same, this latency can be hidden by the large 
number of threads execution. Even though the bus between global memory and the SMs is quite 
wide, the massively parallel execution can easily be saturated by the limited bandwidth, and this 
often becomes the performance bottleneck in CUDA programs. 

The development of CUDA programs must be careful in the use of the global memory, for this 
reason, understanding how to efficiently use global memory is essential for CUDA programmer. 

Due to host memory copy, directly in GPU’s global memory, all data are first presented in global 
memory, so data must be pre-fetched from global memory to lower latency memory, in general, the 
best option is the shared memory. However, CUDA Toolkit Documentation [55] has a specific 
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article dedicated to the optimization, and some chapters are devoted to optimization of global 
memory using, for instance, access pattern. 

2.5.2.2 Shared Memory 

Shared memory is the name given to the memory that threads from a same block can access (see 
Figure 2-10). As a programmer, you can use the CUDA Keyword __shared__ to make a variable 
resident in the shared memory. 

The CUDA Compiler creates a copy of the variable in the shared memory for each block that the 
programmer launch on the GPU. Every thread in that block shares the memory but, threads cannot 
see or modify the copy of this variable that is seen within other blocks. Unlike global memory, 
shared memory is an on-chip memory, it means that this memory resides physically on the GPU. 
Because of this, the latency to access shared memory tends to be far lower than typical buffers.  

CUDA developers can efficiently communicate every thread within a block with the use of the 
shared memory, but if we expect to communicate between them, it is necessary a mechanism for 
synchronizing between threads. In CUDA C, __syncthreads() is used for synchronize threads in the 
same block ¡Error! No se encuentra el origen de la referencia.. This call guarantees that every 
thread in the block has completed their instructions prior to the __syncthreads() before the hardware 
will execute the next one. 

2.5.2.3 Constant Memory 

The constant memory is an off-chip memory, albeit supports low latency and a high bandwidth 
because it has an associated cache on-chip. The host is responsible for writing on it ¡Error! No se 
encuentra el origen de la referencia.[54]. There are two reasons for reading from a constant 
memory (64KB) that can save bandwidth over standards reads of global memory: 

 A single read from constant memory can be broadcast to other nearby threads. 

 Constant memory is cached, so consecutive reads of the same address will not incur any 
additional memory traffic. 

2.5.2.4 Texture Memory 

Like constant memory, texture memory is another variety of read-only memory that can improve 
performance and reduce memory traffic when reads have certain access patterns. Although texture 
memory was originally designed for traditional graphics applications, it can also be used in some 
GPU computing applications. 

The texture units were designed for OpenGL and DirectX rendering pipeline but the texture 
memory may also be used for general-purpose computing. Like constant memory, the texture 
memory has an associated cache on-chip and this memory allow to reduce memory requests to off-
chip DRAM. 

This memory was designed for graphical applications where memory access patterns has a strong 
spatial locality. 
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Thereby, to use the texture memory is necessary to declare the inputs such as texture references. 
For instance: texture<float> constSrc. Nevertheless, we need to bind the references to the memory 
buffer using cudaBindTexture(). This basically tells the CUDA runtime two things: 

 We intend to use the specified buffer as a texture. 

 We intend to use the specified texture reference as the texture's "name". 

When we are using Texture memory we cannot use square brackets to read from buffers; we 
need to use tex1Dfetch() when reading from memory. text1Dfetch() is a compiler intrinsic, for this 
reason we can no longer pass the input and/or output buffers like parameters because the compiler 
needs to know at compile time which textures tex1Dfetch() should be sampling. 

Some problems can arise having two dimensional domains and therefore it can be convenient to 
use two-dimensional texture memory: e.g. texture<float, 2> constSrc. When we are working with two-
dimensional texture memory, we access to the memory using tex2D() instead of using tex1Dfetch() 
and the bind reference using cudaBindTexture2D() ¡Error! No se encuentra el origen de la 
referencia.. 

2.6 NVIDIA TESLA K40 

In order to accelerate most demanding High-Performance Computing (HPC) challenges, 
NVIDIA releases the Tesla family of GPUs. NVIDIA Tesla is the world’s leading platform for 
accelerated datacentre, deployed by some of the world’s largest supercomputers and enterprises.  

The Tesla K40 appear in 2013 and it is based in NVIDIA Kepler compute architecture which 
was a more efficient architecture than the previous generation Fermi architecture. 

Tesla K40 is a PCI-E, dual-slot computing module in the Tesla (267 nm length) form factor 
comprised of a single GK110B GPU. This GPU is designed for servers and it has 12 Gb of 
GDDR5 on-board memory and his main demand is for the use of High-Performance Computing 
(HPC). The Table 2-2 contains K40 key features [61][62]. 

Kepler architecture introduces some technologies improvements to obtain a better perfomance, 
compared with the previuos generation. Kepler architecture is the first one that enables GPU 
threads to automatically spawn new threads, this technology is known as Dynamic Parallelism. 
Hyper-Q technology allows multiple CPU cores to simultaneously use the CUDA cores on a single 
Kepler GPU, increasing GPU utilization and slashes CPU idle times. 

Tesla K40 
Cuda capability 3.5 

Peak double-precision floating point performance (board) 1.43 Teraflops 

Peak singlle-precision floating point performance (board) 4.29 Teraflops 

Number of processor cores 2880 

Base core clocks 745 MHz 

Boost core clocks 810 MHz and 875 MHz 

Memory clock 3.0 GHz 

Memory bandwidth 288 GB/sec 

Total board memory (GDDR5) 12 GB 

Table 2-2: Tesla K40 features 
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2.6.1 Kepler GK110 GPU Architecture  

NVIDIA aims to cover high performance parallel computing demand that have increase across 
many areas of science, medicine, engineering, etc. NVIDIA’s Kepler GK110 GPUs are designed to 
help solving the world’s most difficult computing problems. One of the main premises of Kepler 
GK110 was the simplification in the creation of parallel programs and further revolutionize the high 
performance computing issues. 

Kepler GK110 was built first and foremost for Tesla. The GK110 GPU exceeds the raw 
computational power delivered by Fermi architecture and it does it by efficiently reducing the 
consumption and generating less heat output. 

A full Kepler GK110 include 15 SMX and six 64-bit memory controllers [56]. In the Figure 2-11 
we can see the full chip diagram of a GK110. 

A principal design goal for the Kepler architecture was improving power efficiency. The 
manufacturing in 28 nm was an importance role in lowering power consumption but NVIDIA 
engineers needed realize many modifications in the GPU architecture to further reduce power 
consumption while maintaining great performance. 

Kepler GK110 supports CUDA capability 3.5, we can see a brief overview in the Table 2-3.  

2.6.1.1 Streaming Multiprocessor (SMX) Architecture 

In the GK110, each SMX units feature 192 single-precision CUDA cores, and each core has fully 
floating-point and integer arithmetic logic units.  

NVIDIA engineers aimed to increase the GPU’s delivered double precision performance because 
double precision arithmetic is at the heart of many HPC applications. Kepler GK110’s SMX also 
retains the special function units (SFUs) for fast approximate transcendental operations as in 

previous‐ generation GPUs, providing 8x the number of SFUs of the Fermi GF110 SM [56]. 

For the first time, the cores within the GK110 SMX unit used the primary GPU clock. In 
previous architecture, the cores inside SMX used the 2x shader clock. 
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Figure 2-11: Kepler architecture. 

Compute Capability 3.5 

Threads / Warp 32 32 

Max Threads / Thread Block  1024 

Max Warps / Multiprocessor 64 

Max Threads / Multiprocessor  2048 

Max Thread Blocks / Multiprocessor  16 

32-bit Registers / Multiprocessor 65536 

Max Registers / Thread Block  65536 

Max Registers / Thread 255 

Max Shared Memory / Multiprocessor 48K 

Max Shared Memory / Thread Block 48K 

Max X Grid Dimension  232-1 

Hyper-Q Yes 

Dynamic Parallelism Yes 

Table 2-3: Compute capability of Kepler GPUs 

About the warp scheduler, recall the SMX schedules threads in groups of 32 parallel threads 
called warps. Each SMX features four warp schedulers and eight instruction dispatch units, allowing 
four warps to be issued and executed concurrently. Kepler has a quad warp scheduler and it can 
select four warps, and two independent instructions per warp can be dispatched each cycle. Kepler 
GK110 allows double precision instructions to be paired with other instructions. 
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2.6.1.2 Kepler Memory Subsystem – L1, L2, ECC  

The Kepler architecture supports a unified memory request path for loads and stores, with an L1 
cache per SMX multiprocessor. Kepler GK110 also enables compiler-directed use of an additional 
new cache for read-only data.  

 
Figure 2-12: Kepler Memory Hierarchy 

Kepler SMX has 64 Kb of on-chip memory that can be configured as 48 Kb of shared memory 
with 16 Kb of L1 cache, 16 Kb of shared memory and 48 Kb of L1 cache or 32 Kb/32 Kb split 
between both memoirs. The shared memory bandwidth is 256 B per core clock. 

Kepler introduced a 48 Kb cache for data that is known to be read-only for the duration of the 
function. About the L2 cache memory, it has double the amount of L2 available in the Fermi 
architecture getting 1536 Kb. 

2.7 SUMMARY 

Hyperspectral image analysis methods have been intensively investigated in the remote sensing 
area and currently their development and application have been extended to other fields. It is an 
emerging imaging modality for medical applications, especially in disease diagnosis and image-guided 
surgery, this technology shows some advantages compared to the current techniques employed for 
cancer detection. 

The study of in-vivo tissue allows providing a non-invasive disease diagnosis and an automatic 
guidance tool for surgery. After a cancer resection surgery, a pathology report notes about the 
surgical margins, that can be one of the following three types: clear, positive, or close. In case of 
clear margin, normal tissue surrounds cancer cells. In case of positive margin, cancer cells appear on 
the margins, which would lead to an additional surgery to remove the remaining cancer tissue. In 
case of close margin, cancer cells are close to the edge of the tissue, but not right at the edge. More 
surgery may be needed. 

Surgery is one of the major treatment options for brain tumours, despite the improvements in the 
accuracy of brain tumour resections, neurosurgery is still unable to accurately define brain tumour 
margins in real-time. Under these circumstances, hyperspectral imaging arises as a potential solution 
that allows a precise detection of the edges of the malignant tissues in real time. 

HELICoiD is a European collaborative project and its main goal is to efficiently differentiate 
between healthy and diseased tissues and so lead to better surgical removal using the 
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aforementioned hyperspectral images. This Master Thesis has the mail goal of accelerating part of 
the algorithms used in the HELICoiD project to classify the hyperspectral images using NVIDIA 
GPUs for the computation of the brain cancer presence/absence in real-time. 

The classification is made by supervised pixel-wise algorithms, concretely, in this project we use 
the Random Forest algorithm. Supervised pixel-wise algorithms are a specific branch from machine 
learning whose purpose is to use a set of observations, the training set, to find a decision function. 
The main feature is that it is necessary to have a labelled training data, therefore, the training data 
consists of an input object (usually a feature vector) and a desired output value. 

Random Forests is a supervised learning method that can be applied to solve classification or 
regression problems. It is constituted by a combination of tree predictors such that each tree 
depends on the values of a random vector. This method allows a quick prediction but requires a 
long training phase with a huge dataset.  

The main idea behind Random Forests is to generate several decision trees from the same 
dataset. It will significantly improve the classification result by means of the vote for the most 
popular class spanned by the trees. In the training phase, the idea is to training multiple trees on a 
random subset of the dataset and a random subset of features. The error estimation is defined by the 
Out-Of-Bag concept and the split selection can be evaluated with different methods, for instance 
the Gini index. 

As explained above, the main goal of this project is to accelerate hyperspectral images 
classification by using GPUs, specifically CUDA GPUs. For this reason, we will use a NVIDIA 
Tesla K40, a GPU develop by NVIDIA with the purpose of covering high performance parallel 
computing applications that have increased their computational requirements across many areas of 
science, medicine, engineering, etc. This GPU is based in the Kepler architecture with capability 3.5. 
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CHAPTER 3:  HYPERSPECTRAL IN-VIVO 
BRAIN TISSUE DATABASE 

3.1 INTRODUCTION 

This section will describe the hyperspectral in-vivo brain tissue database employed to perform the 
experiments to evaluate the improvements performed in the hyperspectral classification algorithm. 
Moreover, the intra-operative hyperspectral acquisition system and the process to obtain and label 
the images during a neurosurgical operation will be briefly described.  

3.2 INTRA-OPERATIVE HYPERSPECTRAL ACQUISITION SYSTEM 

In order to obtain the hyperspectral images of the in-vivo human brain surface during the 
neurosurgical operations, the HELICoiD project has built a demonstrator capable of simultaneously 
obtaining two hyperspectral cubes [57]. The two hyperspectral cameras selected are the Hyperspec® 
VNIR A-Series and the Hyperspec® NIR X-Series, manufactured by HeadWall Photonics, 
Massachusetts, USA. The VNIR (visible and near infrared) camera ranges between 400 nm to 1000 
nm. The NIR (near infrared) camera ranges between 900 nm to 1700 nm.  

Figure 3-1 shows the main parts of the demonstrator. The most important elements of the 
system are located in the acquisition scanning platform. Table 3-1 presents the specifications of the 
two push-broom hyperspectral cameras. These cameras are fixed in a scanning unit composed by a 
stepper motor and a screw with a maximum path of 230 mm and a step resolution of 6.17 µm. 
Furthermore, a cold light emitter is located together with the cameras. The cold light emitter is 
connected to a 150 W Quartz Tungsten-Halogen system (QTH) (Figure 3-2.c), which offers 
broadband emission in the VIS (visible) and NIR spectral ranges (400 nm to 2200 nm), through an 
optical fibre. This system isolates the high temperatures produced by the halogen lamp, avoiding a 
direct emission to the brain surface.  

Data pre-processing system is composed by a high-performance computer which manages the 
entire system, especially the acquisition scanning platform and the interaction with the user through 
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the graphical user interface (GUI). Finally, the processing sub-system platform has the goal of 
performing the hyperspectral classification in order to achieve the results in real-time. 

 
Figure 3-1: HELICoiD demonstrator main parts. 

Figure 3-2.b shows the HELICoiD demonstrator inside the pre-operative area at the University 
Hospital Doctor Negrín in Las Palmas de Gran Canaria, Spain. Figure 3-2.a presents the acquisition 
platform where the cameras and the cold light element are located. On the left side of the platform, 
the VNIR camera is located, and on the right side, the NIR camera is placed. In the middle of the 
two cameras, the cold light emitter is located. These three elements are correctly aligned in order to 
obtain the images properly illuminated. Figure 3-2.d displays the stepper motor controller, which is 
in charge of managing the scanning platform shift. 

 

 Hyperspec® VNIR Hyperspec® NIR 

Spectral range (nm) 400 – 1000 900 – 1700 

Spectral resolution (nm) 2 – 3 5 

Slit (μm) 25 25 

Spatial bands 1004 320 

Spectral bands 826 172 

Frame Height (FOV) (mm) 129.21 153.6 

Pixel Dimensions (IFOV) (mm) 0.1287 0.4800 

Max Pixels per Frame 1004 320 

Max Frames per Capture 1825 489 

Dispersion per pixel (nm) 0.74 4.8 

Detector array Silicon CCD InGaAs 

Frame rate (fps) 90 100 

Table 3-1: Camera Specifications 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3-2: (a) Acquisition scanning platform, (b) complete HELICoiD demonstrator located in the pre-operative room of the 
neurosurgical operating theatre at the University Hospital Doctor Negrín, (c) Quartz Tungsten-Halogen system and (d) stepper motor 

controller. 
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3.3 HYPERSPECTRAL BRAIN IMAGE DATABASE 

This section provides an overview of the procedure carried out to obtain the hyperspectral 
images of naked brain surface that have been generated in the HELICoiD database. Furthermore, 
the process to label the samples for the supervised algorithm development is described. Finally, the 
dataset of the images selected for the hyperspectral algorithm evaluation is presented. 

3.3.1 Capturing Hyperspectral Images During Surgery  

Before the operation, the patient has an Image Guide Stereotactic (IGS) compatible CT 
(Computed Tomography) and MRI (Magnetic Resonance Imaging) head which are up loaded on to 
the IGS system. Patient undergoes general anaesthesia and placed in a supine position and registered 
on to the IGS system. A scalp incision is made and the skull exposed before a burr hole/s is drilled 
using a high-speed drill. A craniotome is then inserted into the burr hole/s and a bone flap is cut out 
(craniotomy) is created using a craniotome. The dura is then cut with a knife (durotomy) to expose 
the brain surface. 

Using the HELICoiD demonstrator, an in-vivo human brain hyperspectral image database has 
been created. The hyperspectral cubes have been obtained from 22 different patients at the 
University Hospital Doctor Negrín. The type of tumours captured in this study involves both 
primary secondary brain tumours. In order to obtain the samples correctly labelled, the four steps 
flowchart presented in Figure 3-3 has been followed. In the following sub-sections, each one of 
these steps will be described.   

 

Figure 3-3: Data capture and labelling process. 

3.3.1.1 Hyperspectral image capture 

Initially, images are captured after durotomy before the arachnoid and pia have been breached if 
the tumour comes to the surface on imaging. If the tumour can be seen on the surface, two sterilised 
rubber ring markers are placed to identify the position of the tumour and that of normal brain as 
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judged by the operating surgeon where he/she can be quite confident that the brain tissue is normal. 
This judging is done based on visual appearance, anatomical relationship to sulci and gyri an image 
guidance feedback. If possible, the exact location of the markers is noted using the IGS system 
pointer so as to identify the location of the markers over the brain. This pointer allows knowing the 
position of the rubber ring markers with respect to a MRI or CT performed previously to the 
patient for the surgical procedure. Figure 3-4 and Figure 3-5 illustrates the use of the IGS system 
pointer to identify the position of the markers in a MRI. 

After that, the operator of the HELICoiD demonstrator captures the hyperspectral image of the 
exposed brain surface with and without markers. The markers offer an area of the image where the 
pixels can be labelled with the surgeon prior evaluation and then, this prior evaluation is contrasted 
with the pathology results, as the inside of the rubber ring markers will be sent to pathology.  

 

Figure 3-4: IGS system pointer over the HELICoiD tumour marker located on the exposed brain surface.  

 

Figure 3-5: IGS system screen capture with the coordinates of the tumour marker in the MRI. 
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3.3.1.2 Tissue resection 

After the first hyperspectral image capturing, the HELICoiD demonstrator is moved out from 
the surgical zone and neurosurgeons start the tumour resection. They take a sample of the tissue that 
is inside of the tumour marker. The sample is stored in a container with the HELICoiD label and it 
is assigned a number corresponding with the marker. These samples will be sent to pathology and 
the result will be used as the ground truth reference for the algorithm development. The numbers 
assigned will help in the labelling process.  

The second set of images is captured while the tumour is gradually resected. At a time when there 
is macroscopically normal brain and tumour exposed and when the surgeon feels it is safe to halt 
surgery, the surgeon ensures perfect haemostasis then washes the field thoroughly with warm saline 
to wash away any residual blood while ensuring no significant temperature change (and resultant 
blood flow change). Following this, the field is sucked dry by application of a cottonoid to the 
parenchyma and applying suction to this. The operating surgeon then identifies the most suitable 
location to capture the images.  Markers are again placed on to the tumour and on to another area, 
which the operating surgeon judges as normal brain. Hyperspectral images are then obtained again 
with and without markers in-situ. Again, tissue samples are obtained from the position of the 
markers and sent to pathology laboratory for tissue diagnosis. The number of markers using in each 
surgery is variable and depends on the nature and characteristics of the tumour.  

3.3.1.3 Experts evaluation 

All resected tissue is sent to the neuropathology laboratory where it is formalin fixed and 
undergoes standard H&E staining and any further required staining to establish a definitive 
histopathological diagnosis. Neuropathologists are the only ones that can determine if a tissue inside 
of the marker is or not tumour by using off-line histopathologic techniques. Samples are classified as 
tumour or brain and for tumour samples, these are further subdivided into tumour type and grade 
while normal brain samples are classified as white or grey matter. 

3.3.1.4 Samples labelling 

In the last step, by using the information provided by the pathologists, some pixels of the image 
are labelled, using a labelling tool developed in MATLAB, in order to generate the ground truth for 
the training of the supervised algorithm. This labelling tool is used by the neurosurgeon that 
performs the correspondent neurosurgical operation. The neurosurgeon selects a pixel from a RGB 
image to be labelled based on the visual appearance. Once the reference pixel has been selected, due 
to the difficulty of assigning a pixel to a certain class with certain degree of assurance, the Spectral 
Angle (SA) between the selected pixel and the other pixels in the hypercube is calculated. Applying a 
threshold, selected by the specialist, a binary mask is obtained. Adjusting this threshold dynamically, 
a new RGB image is generated, containing only the pixels for which their spectral angle with respect 
to the reference pixel is lower than the threshold. Then, the specialist selects the region of interest 
and assigns a label to the pixels inside this region. The specialist will adjust the threshold until the 
displayed area will match with the expected type of tissue. Figure 3-6 shows a screenshot of the 
HELICoiD Labelling Tool. The spectral signatures of the pixels labelled as ground truth will be used 
as inputs in the supervised classification algorithm scheme in order to generate the model and 
determine its goodness using quantitative metrics. 
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Figure 3-6: Screenshot of the HELICoiD Labelling Tool. 

3.3.2 Hyperspectral Brain Image Dataset  

This study uses only the VNIR images captured by the acquisition system. The dataset employed 
in this Master Thesis is composed by 6 different images from 4 different patients. These images 
have been selected as a reduced dataset since they are the images with the highest quality that allows 
the labelling process with a high confidence from the specialists. This dataset is focused only on the 
primary grade IV glioblastoma (GBM) tumours. Table 3-2 summarizes the operations and captures 
selected from the complete database and Table 3-3 illustrates the synthetic RGB images, generated 
from the captured hypercubes, of each capture.  

3.3.3 Hyperspectral Brain Labelled Sample Dataset  

The labelled dataset generated using the HELICoiD Labelling Tool employed in this master 
thesis is obtained from the previously described images of glioblastoma tumours. Table 3-4 
illustrates the ground truth maps generated by the neurosurgeons using the HELICoiD Labelling 
Tool. Table 3-5 details the total number of pixels labelled. The dataset has been reduced to 4 
different classes (Normal Tissue, Tumour Tissue, Blood Vessels and Background). 

 

Operation ID Operation Number Capture Number 

1 8 1, 2 

2 12 1, 2 

3 15 1 

4 20 1 

Table 3-2: Hyperspectral Brain Image dataset of GBM tumour selected 
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Op8C1 Op8C2 Op12C1 

   
Op12C2 Op15C1 Op20C1 

   

Table 3-3: Hyperspectral Brain Image Dataset 

 

GT Op8C1 GT Op8C2 GT Op12C1 

   
GT Op12C2 GT Op15C1 GT Op20C1 

   

Table 3-4: HELICoiD ground truth maps of VNIR images 
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Class #Labelled pixel dataset 

Normal 18,644 

Tumour Primary (G-IV) GBM 11,054 

Blood Vessel 22,671 

Background 
Meninges 

Dura Mater 10,888 

Skull Bone 9,941 

Generic Background 10,524 

Total: 87,722 

Table 3-5: HELICoiD labelled pixel dataset of VNIR images 

3.4 SUMMARY 

To obtain the hyperspectral images of the in-vivo human brain surface during the neurosurgical 
operations, the HELICoiD project has built a demonstrator capable of simultaneously obtaining two 
hyperspectral cubes. The two hyperspectral cameras selected are a VNIR camera that ranges 
between 400 nm to 1000 nm and a NIR camera that ranges between 900 nm to 1700 nm. 

Data pre-processing system is composed by a computer which manages the entire system and the 
processing sub-system platform that has the goal of performing the hyperspectral classification in 
order to provide the results in real-time (see Figure 3-1). 

An in-vivo human brain hyperspectral image database has been created using the HELICoiD 
demonstrator. In order to obtain the samples correctly labelled, the four steps flowchart presented 
in Figure 3-3 has been followed. 

In the hyperspectral image capture process, if the tumour can be seen on the surface, two 
sterilised rubber ring markers are placed to identify the position of the tumour and that of normal 
brain as judged by the neurosurgeon where he/she can be quite confident that the brain tissue is 
normal. Later, the operator of the HELICoiD demonstrator captures the hyperspectral image of the 
exposed brain surface with and without markers. The markers offer an area of the image where the 
pixels can be labelled with the surgeon prior evaluation and then, this prior evaluation is contrasted 
with the pathology results. 

Neurosurgeons take a sample of the tissue that is inside of the tumour marker. These samples are 
sent to pathology and the result are used as the ground truth reference for the algorithm 
development.  

The expert evaluation is made by neuropathologists which are the only ones that can determine if 
a tissue inside of the marker is or not a tumour by using off-line histopathologic techniques. 

In the last step, by using the information provided by the pathologists, some pixels of the image 
are labelled, using a labelling tool developed in MATLAB, in order to generate the ground truth for 
the training of the supervised algorithm. This labelling tool is used by the neurosurgeon that 
performs the correspondent neurosurgical operation.  
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CHAPTER 4:  PARALLEL IMPLEMENTATION 
OF BRAIN CANCER DETECTION 
ALGORITHM 

4.1 INTRODUCTION 

This section is focused in the Random Forest implementation used as a supervised pixel-wise 
algorithm for brain cancer detection. In chapter 2.3.1.1 was explained how RF works and the 
different phases of RF training process.  

In the next chapter 4.2, the RF CPU implementation that is used as starting point for the GPU 
implementation, presented in this work, is explained. This implementation has been tested using the 
previously explained datasets. These datasets will be used for the comparison between the CPU and 
the GPU implementation. Chapter 4.3 will present an analysis of the CPU implementation in order 
to identify the possible bottlenecks that can be parallelized using a GPU for the acceleration of the 
hyperspectral image processing. The last chapter, section 4.4, will explain how to implement the RF 
algorithm in the GPU.  

4.2 CPU IMPLEMENTATION 

The RF CPU implementation has been based on an existent implementation performed by 
Marvin N. Wright and Andreas Ziegles called Ranger (RANdom Forest GeneRator) [63]. This 
implementation has been selected due to it has been tested for the Git Hub community. Wright and 
Ziegles implemented Ranger for the necessity of having a RF algorithm optimized for high 
dimensional data and large number of features without a license for commercial use.  

One of the main reasons why Ranger was selected is that the core of Ranger is implemented in 
C++ and uses only standard libraries, using the version C++ 11 of the standard for the 
programming language C++. Ranger is an algorithm where the authors have identified the 
bottlenecks and optimized the algorithm, having a demonstrated computational and memory 
efficiency. 
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Ranger is a good option to start our implementation in GPU for the reasons previously 
commented. Figure 4-1 shows the runtimes of five different RF algorithms with different number of 
trees, features, samples and mtry values (the percentage of features tried at each split) [63] where it 
can be appreciated that Ranger is faster than the other options. 

Ranger has realized a great job with the CPU parallelization splitting the training phases between 
the different CPU threads. However, the data structure guarantees a good performance in the data 
access, avoiding cache failures. In our dataset, each row represents an instance and the different 
columns are the features. Each feature represents a band of the hyperspectral image. Ranger 
represents the rows like a feature and the columns are the instances because the usual operation in 
the algorithm is to read a feature and compare the different instances. For this reason, Ranger 
improves cache failures changing the memory data structure. Ranger can work with three different 
data types: double, float and char. This work is only focused in double data because the employed 
dataset is represented with double information.  

 

Figure 4-1: Figure extracted from [63] where different RF implementation are compared with Ranger. A) runtime analysis with 
variation of the number of trees, B) variation of the number of features, C) variation of the number of samples, D) variation of the 

percentage of features tried for splitting (mtry value). 
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Figure 4-2: Ranger training phase flow diagram. Dashed lines represent the internal process of the previous process box. 
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CPU parallelization in the training phase is implemented in the growing tree phase (see Figure 
4-2). The previous phase, like importing the dataset or to initialize the forest, only uses the main 
thread. During the tree growing, the main thread is used to show information to the user and the 
user does not have the impression that Ranger is inactive during a hard training. About the number 
of threads in CPU implementation, the user can indicate the number of threads using the argument 
–nthreads in the terminal, but it is not necessary to indicate the number of threads used to get a good 
performance in Ranger, at least in C++ implementation. Ranger automatically uses the number of 
max threads that the CPU can throw. 

Regarding to the splitting node process, implemented split criteria is the decrease of node 
impurity for classification and regression RF, and the log-rank test for survival RF. In classification 
trees, node impurity is measured with the Gini index (see chapter 2.3.1.1.1) but in regression trees 
Ranger uses the estimated response variance [63]. 

4.2.1 Experimental Results 

This chapter presents the evaluation of Ranger using the dataset generated within the HELICoiD 
project. For this evaluation, only the labelled dataset of the operation number 12 capture 2 has been 
employed in order to simplify the evaluation process. The K-Fold Cross-Validation method has 
been employed for the evaluation. In this method, the dataset is partitioned into K disjoint folds and 
each fold has the same class proportion. 

The basis of Cross-Validation consists in using 𝐾 − 1 folds for training a classifier and the 

remaining for assessing its performance. This procedure is repeated 𝐾 times varying the test set in 
each iteration until all folds have been used to evaluate the model performance. Figure 4-3 shows an 
example of this method using 10 folds, it means  =  10 , where the fold used to evaluate the model in 
each iteration is highlighted in red colour. 

 

Figure 4-3: K-Fold Cross Validation example 

The metrics chosen for estimating the classifier performance in this study are sensitivity, 
specificity and overall accuracy. These metrics summarize the information supplied by a confusion 
matrix (Table 4-1).  
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 Prediction 

Normal Tissue Tumour Tissue Blood Vessels Background 
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Normal Tissue 650 0 0 0 

Tumour Tissue 0 333 0 0 

Blood Vessels 0 2 588 0 

Background 1 0 0 872 

Table 4-1: Example of confusion matrix of the results obtained from one of the iterations during the cross-validation process. 

In our test, we used ten folds and the previous matrix is just one example out of ten confusion 
matrices generated during the test, where various were perfect (the prediction matched all the 
samples). 

Before providing the definitions of the sensitivity, specificity and overall accuracy, some terms 
must be defined: 

 True Positive (TP): Correctly detected conditions. It means that the result of the test is 
positive and the actual value of the classification is positive. 

 False Positive (FP): Incorrectly detected conditions. The result of the test is negative 
and the actual value of the classification is positive. 

 True Negative (TN): Correctly rejected conditions. The result of the test is negative and 
the actual value of the classification is negative. 

 False Negative (FN): Incorrectly rejected conditions. The result of the is positive and 
the actual value of the classification is negative. 

 The standard classification metrics employed in this study can be summarized as follows: 

 Sensitivity: Is the proportion of actual positives that are correctly identified as positives 
by the classifier. It is expressed as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4-1) 

 Specificity: Is the proportion of the actual negatives that the classifier successfully tests 
negative for it. It is computed as follows: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4-2) 

 Overall Accuracy: Refers to the ability of the model to correctly predict the class label of 
new or previously unseen data. The next equation shows formula of the overall accuracy 
metric. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (4-3) 

Finally, the previous metrics was used and computed the average to each class. Figure 4-4 and 
Table 4-2 show the average of each metric to the different classes performed to the whole dataset. 
These results outperform 99% of overall accuracy for every class. In terms of specificity and 
sensitivity, these results show a good discrimination rate between the different classes. 
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As conclusion, seeing these results, we have demonstrated that Ranger can behave correctly with 
our dataset and, therefore, we can continue with the acceleration process of the RF algorithm. 

 Normal Tissue Tumour Tissue Blood Vessel Background 

Sensitivity 
Average (%) 

99.95 99.94 99.80 99.95 

Specificity 
Average (%) 

99.98 99.95 99.98 99.98 

Overall Accuracy 
Average (%) 

99.97 99.95 99.94 99.97 

Table 4-2: Cross-validation result of the Ranger CPU implementation 

 

Figure 4-4: Cross-validation result of the Ranger CPU implementation with a forest of 500 trees 

4.3 PARALLELIZATION ANALYSIS 

Ranger has a good performance analysis in the different bottleneck of RF algorithm, for this 
reason the analysis of Ranger is a challenge but we are going to focus our efforts in the different 
parts where Ranger performs the most time-consuming tasks in the training phase.   

The first process of Ranger is dedicated to generate the forest, reading the dataset, preparing it 
for the treatment, structuring the information in data objects and generating the trees. Although we 
know that data objects functionalities can be accelerated using GPUs, such as the data object sort 
function that could be achieved using a GPU sort implementation (for example parallel Radix 
implementation, or the use of Thrust CUDA library), in this work, we will not focus our effort in 
this task. However, we will concentrate our efforts in the hardest part of a RF implementation that it 
is within the growing trees process.  

The authors of Ranger made a good decision when they decided to implement the CPU 
parallelization in each growing tree process and not in the internal process. Thinking about 
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complementing Ranger, GPU is a good decision in order to accelerate the hardest internal process 
and the rest of the process is accelerated using CPU parallelization. 

The aim of this analysis will be to identify where we can reduce the processing time and to get a 
better performance of Ranger implementation. The identified bottlenecks will be accelerated using 
CUDA kernels and using the context management to combine CPU and GPU parallelization. 

4.3.1 Bottlenecks Identification 

We will focus the acceleration development in the training phase of RF, the hardest part of this 
algorithm. Checking the Figure 4-2, a good starting point could be to accelerate the tree initialization 
process where it is necessary to generate the learning set and the random subset of features that tree 
will use for training. These operations consist of a loop that generates a random output which 
represents the sample in the bootstrap, the learning set, or the feature candidate for training. Both 
are made by the main CPU thread, there are not a CPU parallelization.   

 The first bottleneck is identified in order to accelerate the forest initialization. Initialization part 
is not critical; it take up some decimals per tree but this accumulated time could take several seconds 
in a RF with larger number of tree and a huge dataset. 

The principal bottleneck of Ranger is within the splitting process, to compute node impurity. 
Terminal nodes does not needs to splitting and is necessary to identify which feature is better, 
between all possible candidate, and what value to use (see Figure 2-6). The possible values of a 
feature are determined by the different values that it possesses in the dataset. Splitting process just 
compute the decrease of node impurity with all possible feature and their possible values. The bigger 
decrease is chosen such as the better option. 

Ranger knows this problem and for this reason, if is not selected the memory saving option, it 
optimizes the data structure in order to reduce the process time, for example to sort all possible 
values and eliminate the last one because to split with the biggest value is impossible and node will 
not split. Despite this optimization in data strut, to find the best split still is the hardest part in 
training phase and it take several minutes with a huge dataset. 

Such as we just said, the problem of locating the best split scale proportionally to the number of 
samples and the number of possible features. In RF, the split value for a node is extracted from all 
possible values in the dataset. This means that when the dataset grows, it is likely that the number of 
possible values also grows.  About the number of features, these features are randomly selected but 
the user indicates the number of features tried at each split (mtry). By default, Ranger works with 
eleven possible features, but in a dataset with hundreds of features, this number is very lower. For 
those reasons, finding the best split feature and value is the most critical process and where we can 
get a high performance using GPU. 

4.4 GPU IMPLEMENTATION 

In this section, we will explain about GPU kernels implemented in order to get a better 
performance in the RF algorithm. Although Ranger has implanted all type of forest (regression, 
classification, survival, etc.), we focus our work on classification forest training phase, due to it is the 
type of forest required by the HELICoiD application.  

In chapter 4.3, we identified multiple bottlenecks and in this section, we will explain how we get 
to accelerate that processes. 
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4.4.1 Bootstrap kernel 

As it can be seen above, the generation of bootstrap samples is not a hard process but if the 
number of tree increment sharply as result we may need several seconds. For this reason, with GPU 
implementation we could reduce the process time a little bit. This part is not critical but it has a 
simple solution. 

Every tree needs his learning set and, for this reason, RF uses bootstrapping, i.e. random 
sampling with replacement. The number of bootstrap samples is a percentage of the number of 
instances of the dataset, in Ranger that percentage is represented by the sampleFraction attribute.  For 
instance, if sampleFraction value is 1.0, then the number of bootstrap samples is equal to the number 
of instances of the dataset, albeit the bootstrap may not contain all samples of the dataset.  

In the bootstrap kernel, the idea is that each block generates the training dataset for each tree. As 
is, can be seen in Figure 4-5, the solution is a simple one dimensional grid where each block 
generates the learning set of a tree. In this case, each thread randomly generates a sample ID 
between all possible samples. Since the number of threads is limited by the capability of the GPU, 
each thread must generate one or more sample IDs. 

 

Figure 4-5: Bootstrap one-dimensional grid layout of the bootstrap kernel for n number of trees. The number of blocks generates in 
the X axis is equal to number of trees. Each block generates the learning set of a tree. 

In the bootstrap kernel, the thread identification is represented by the tid variable and this 
identification represents the sample which will be generated. The thread must generate one or more 
sample IDs and, for this reason, the tid must increment as follows: 

𝑡𝑖𝑑+= 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 (4-4) 

where blockDim.x represents the number of threads in X axis of the block. 

In GPU bootstrap implementation, the kernel makes a histogram at the same time it is generating 
the learning set. This histogram is used in order to generate the Out-Of-Bag samples (see chapter 
2.3.1.1.1 ) which will be used for estimation error. 

Since we want the generation of the sample ids to be random, it is necessary to use a random 
generator. For this purpose, cuRAND library has a function which generate a uniform distribution 
between 0.0 and 1.0. In this case, we need to generate a specific range that contemplates the full 
range of samples. It is generated with the following sequence: 

1) Use cuRAND to generate a uniform distribution between 0.0 and 1.0. 

2) Multiply this by the desired range (largest value – smallest value + 0.999999). 

3) Add the offset (+ smallest value). 

4) Truncate to an integer. 

The cuRAND library initialization needs a seed which will be used for random generator. In the 
bootstrap kernel, an input parameter is a vector containing a seed for each tree, better said, for each 
block. 
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Finally, CUDA bootstrap kernel gives us an array where each row represents the learning set of 
each tree and the histogram of the samples (Figure 4-6 shows a simple example). CPU thread will 
check the histogram in order to prepare the OOB set, verifying that samples have not been selected 
in the learning set and use them to estimate error. 

This kernel implementation has some limitations. First, the number of trees cannot exceed the 
maximum x-dimension of a grid of thread blocks (determinate by the GPU capability, see [65]) 
because it generates a block per tree (Figure 4-5). The second limitation is about the global memory 
of the GPU: the max number of tree is limited by: 

𝑛𝑇𝑟𝑒𝑒 =
𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦𝑆𝑖𝑧𝑒

(1 + 𝑠𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛) ∗ 𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠 ∗ 8
 

((1 + 𝑠𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛) ∗ 𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠 ∗ 8) ⊂ ℤ 

(4-5) 

Where nSamples represents the number of samples in the dataset and sampleFraction is the number of 
bootstrap samples (percentage of the nSamples). In the product between sampleFraction and nSamples 
we are interested only in the integer part. Arrays are composed of elements size_t whose size are 8 
bytes. 

 

Figure 4-6: Bootstrap kernel result in order to generate a learning set of 5 samples from a dataset of 10 to 5 trees. SamplesID is the 
learning set per tree identifying the sample with a ID. InbagCount is a histogram of the samples used for training, necessary for to 

check with samples belong to the Out-Of-Bag set. 

About the generation of feature candidate, the idea was to replicate the bootstrap solution where 
each block generates the possible feature candidate in one tree. However, during the 
implementation, we realize that this operation is not optimal for GPU parallelization for various 
reasons. In the first place, our dataset has been pre-processed using a pre-processing pipeline 
presented in 0 and it just use 129 band, it means 129 feature max, and we separated the tree 
initialization per block. It means that the max number of threads per block would be 129, wasting a 
lot of threads per block. Another reason, and more important, the number of possible features 
cannot be repeated. This implies a communication between different threads checking that they are 
not repeating a possible feature id. This communication between threads drastically affects to the 
GPU performance. 

4.4.2 FindBestSplit kernel 

In the previous chapter, we identify the most critical part in the training phase, the split phase 
(see Figure 4-2). In Ranger, classification tree implements the findBestSplit() method where it 
generates a new split node because it is not a terminal node, a pure node. In this method, Ranger 
looks for the best feature, between all possible features, and the best value for it, the threshold. In 
the bottleneck identification chapter (4.3.1), we explained why this is the critical zone in Ranger 
implementation.  
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The GPU implementation of this part is subdivided in three kernels, the first one generates an 
overall class count from the dataset (counting the number of instances that belongs to each class), 
the second kernel generates another overall class count of the possible right child nodes (counting 
the number of instances that belongs to each class in this right child node) and the last one 
computes the decrease of impurity of the node. 

In split selection chapter (2.3.1.1.3), we introduced the Gini index and what is its purpose to 
evaluate the measure of impurity degree of the node. If the node is not a terminal node, it will split 
in a new level, and with the decrease of impurity we can determinate what is the best option for this 

not terminal node.  In the GINI formula (see 2.3.1.1.3 chapter), ∑ 𝑃(𝑡|𝑐)2represents the decrease of 
impurity and objective of this implementation is to identify what is the possible feature and the value 
of the threshold that maximize the summation. 

 

Figure 4-7: one-dimensional grid layout of the overall class count kernel. The number of blocks generates is X+1 and threads must 
run through all samples and generates a temporal histogram in the block’s shared memory. 

The first kernel, which generates an overall class count from the dataset, uses a one-dimensional 
grid layout and each threads access to a classification result of a sample and generates a temporal 
histogram per block in the shared memory, Figure 4-7 shows this operation. In this kernel, the tid, 
thread id, is defined as: 

𝑡𝑖𝑑 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 (4-6) 

where threadIdx.x is the id of the thread in the block, blockIdx.x is the block id and blockDim.x is the 
number of threads in the block. If the number of threads between all blocks is less than the number 
of samples, is necessary that each thread gets sample result and for this reason we have to define the 
offset of the tid. This offset is defined as 

𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑔𝑟𝑖𝑑𝐷𝑖𝑚. 𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 (4-7) 

being gridDim.x the number of blocks. 

Once kernels have processed all samples, and the histogram per block is finished, the next step is 
to generate the histogram in the global memory, adding all histograms of the blocks. In this case, 
only the first C + 1 threads, being C the number of classes, will operate in this process. In this way, 
the number of threads which will be access to the global memory is B*(C+1) and conflicting access 
will be B threads, where B is the number of blocks (see Figure 4-8). For this reason, it is not 
interesting to use an excessive number of blocks because the global memory access must be an 
atomic operation. 
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Figure 4-8: In the overall class count kernel, when it has run through all samples, it must to generate the total histogram in the global 

memory of the GPU. In this case, only the first C + 1 threads will operate, being C the number of classes. 

At this time, the GPU has the overall class count of the dataset in the GPU memory, exactly in 
the global memory. How we explained above, the next process is to generate a class count of 
samples which will branch to the right child node. The way that this right child node is hypothesized 
depends on the feature selected for the bifurcation and the threshold value selected. This operation 
is more complex than the previous one because we need to compare all the possible combinations. 

This second kernel will use a two-dimensional grid where the X axis of blocks will be used to 
process the possible split with a feature and the Y axis will indicate the possible value that it is 
processing such as threshold (see Figure 4-9). For instance, the block(0,0) will generate the overall 
class count of the right child node using the first possible feature of the possible split features and 
the first possible value and the block(0,1) will use the second possible value like threshold. On the 
threads of the blocks, they will go through all the samples to make the histogram in the shared 
memory of the block and, in turn, will count the samples that bifurcate towards the right child node. 
This sample count will also be performed in the shared memory, each thread having its own 
reserved memory for making its own count. The possible features and possible values will be 
generated in the host, using the data methods implemented in Ranger.  

Once all threads have shifted through all the samples and they have finished the histogram and 
the count of samples in the right child node, the block must send the information to the global 

memory. For this process, only 𝐶 + 2 threads are used, where 𝐶 + 1 first threads are responsible for 
passing the histogram, in the shared memory, to the global memory and the other thread will count 
all samples in the right child node (it runs through all the accounts made by the different threads in 
the shared memory). This operation is identical to the bootstrap kernel.  
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Figure 4-9: Two-dimensional grid layout of overall class count in the possible right node child. We use the X coordinate for the 

feature response and the Y coordinate assign a threshold. A row of blocks calculates all feature responses for a given threshold. F is 
the number of features and Y represents the number of blocks used in the Y axis. 

Now, we are going to describe the memory distribution in this kernel, the second one. How it is 
foreseen, the number of possible values per feature has not to be the same for all feature and we 
have to allocate memory in a way that can be accessed systematically. As we have to extract the 
possible values for each feature from the host, because of distribution of the grid, we have opted for 
an option that slightly wastes part of memory. The possible values are sending to the GPU’s 
memory using a two-dimensional array, where the rows represent the feature, and the columns 
represent the possible values of the feature (see Figure 4-10). We can appreciate that we are wasting 
memory but it is a sacrifice that we make to obtain a greater performance. This decision was made 
for one main reason: to avoid the dynamic allocation of the memory, as it takes a lot of performance 
out of the GPU. 

 

Figure 4-10: Array with possible values of threshold per feature. 𝑃 + 1 is the max number of possible values, but all features do not 

have the same number of possible values. 𝐹 + 1 is the number of features, been F the id of the last feature. Black cells represent 
values that do not belong to the possible values of the feature. 

Due to the way we send data of possible values per feature, the result of this kernel, histogram of 
classes and the count of samples in the right child node, also waste some memory (see Figure 4-11). 
The arrays pitch is the max number of possible splits. 

Finally, the last kernel is used for compute the decrease of impurity. In this kernel, we use a one-
dimensional grid layout but using 𝐹 + 1 (number of features) blocks, and each block in the X axis is 
used in order to generate the best decrease of impurity, the bigger one, of a feature (see Figure 4-12). 
The threads of a block calculate the decrease of impurity of each split threshold using the data 
generated in previous kernels. The decrease of impurity is calculated as follows: 
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∑ 𝑐𝑙𝑎𝑠𝑠 𝑐𝑜𝑢𝑛𝑡 𝑟𝑖𝑔ℎ𝑡 𝑛𝑜𝑑𝑒[𝑐]2 𝑐∈𝑦

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑟𝑖𝑔ℎ𝑡 𝑛𝑜𝑑𝑒
+ 

∑ 𝑐𝑙𝑎𝑠𝑠 𝑐𝑜𝑢𝑛𝑡 𝑙𝑒𝑓𝑡 𝑛𝑜𝑑𝑒[𝑐]2 𝑐∈𝑦

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑙𝑒𝑓𝑡 𝑛𝑜𝑑𝑒
 (4-8) 

where 𝑐 belongs to set of classes 𝑦 = {𝑐1, 𝑐2, … , 𝑐𝑗} and “class count right node” is the histogram 

generated in the previous kernel. The histogram “class count left node” is generated using the “class 
count right node” histogram and the current histogram, in the current node which is going to be 
split, generated in the first kernel. 

 

Figure 4-11: Arrays of results of the overall class count in right node child kernel. The first array represents the number of samples in 
the right child node and the second array is a histogram of classes in the right child node. C is the number of classes. 

Each thread of a block in this kernel has his own memory space in the shared memory of block 
where it is going to keep the best decrease that it has been calculated. Finally, the first thread, thread 
with 𝑡𝑖𝑑 = 0, will access to the memory of all threads and it will save the best decrease of impurity in 
the global memory. The result of this last kernel is a one-dimensional array with the best decrease of 
each feature and another array with the corresponding threshold for the best decrease. This is the 
task of the host that locates the best feature, using the decrease of impurity generated in the kernel. 

 

Figure 4-12: Grid layout of Compute decrease of impurity kernel. The number of blocks is 𝐹 + 1 (number of possible split features). 
The threads of a block calculate the decrease of impurity of each split threshold and keep the best decrease of impurity calculated in 

the shared memory of the block (each thread has his own space). 

4.5 SUMMARY 

The RF CPU implementation has been based on an existent implementation called Ranger. 
Ranger’s authors implemented it for the necessity of having a RF algorithm optimized for high 
dimensional data and a large number of features without a license for commercial use. 
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Ranger has realized a great job with the CPU parallelization, splitting the training phases between 
the different CPU threads. The trees grow is divided in the multiple CPU threads and we have 
accelerated the internal process using the CUDA GPU, complementing the CPU task within the 
GPU. 

Regarding the bottleneck identification, we have identified that accelerating the tree initialization 
process, where it is necessary to generate the learning set and the random subset of features, would 
be a good start point. However, the main bottleneck is in the split node task where RF have to split 
a not terminal node in two child nodes. In this bottleneck, the non-terminal node needs to be split 
and is necessary to identify which feature is better, between all possible candidate, and which value 
have to be used. 

Based on the identification of bottlenecks, we have proposed some GPU implementations that 
have optimized these tasks. The bootstrap GPU implementation is used in order to accelerate the 
learning set of the different trees which belongs to the forest. This learning set must be selected 
randomly using samples from the training dataset (repetition of samples in the learning set is 
allowed) and the cuRAND library to generate the learning set has been used. Finally, the split node 
task was implemented using three kernels: the first one generates an overall class count from the 
dataset (counting the number of instances that belongs to each class), the second kernel generates 
another overall class count of the possible right child nodes (counting the number of instances that 
belongs to each class in this right child node) and the last one computes the decrease of impurity of 
the node. 
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CHAPTER 5:  EXPERIMENTAL RESULTS 

5.1 INTRODUCTION 

This section presents the results obtained using the accelerated GPU implementation previously 
explained in chapter 4.4. First, we test the acceleration with the developed bootstrap kernel versus 
bootstrap sequential of Ranger and later, we will test the findBestSplit kernel against its sequential 
implementation in Ranger. Finally, we have created a RF model using the GPU kernels and another 
one using Ranger without GPU implementations in order to compare results and processing times 
to generate the model. 

In order to perform the experiments, the previously described HELICoiD database has been 
used. This database is divided into three different cases studies (CSs). These CSs differ in which 
patients are included as subject of study. The CS1 has the main goal of checking if the 
discrimination between healthy and tumour tissue can be performed using the available labelled data, 
and avoiding the inter-patient variability of data. It means that the datasets explored in this CS 
include hypercubes from surgical operations where both type of tissue, healthy and tumour, are 
present. In order to avoid the inter-patient variability of data, each surgical procedure is used 
independently for training and testing the classifier. In CS2 all the available labelled data are merged 
in a unified dataset. It means that a unique database is created by joining all single patient data, so 
the inter-patient variability is taken into account. Finally, CS3 is the most realistic one. In this CS, 
each surgical procedure datum is used as test set of a classification algorithm, and that classifier 
model is built using the information from the rest of hyperspectral labelled data (belonging to 
different patients). This case study represents the real case of a new operation, where the 
classification has to be performed with a classifier that has been trained with data from previous 
operations. Table 5-1 shows the total number of labelled pixels per each case study.  

Regarding to the equipment used for these tests, we used a laptop and an equipment rack that 
belongs to IUMA. The laptop is composed by an Intel Processor i7-6700HQ and a NVIDIA GPU 
GTX 960M with 2GB GDDR5. The equipment rack is a server with an Intel Xeon Processor E3-
1225 v3 and two NVIDIA GPU Tesla K40 with 12 Gb GDDR5. The laptop uses Ubuntu 16.04 
with CUDA Toolkit 8 and IUMA’s server uses Xubuntu 14.04 with CUDA Toolkit 7.5. Table 5-2 
shows the specifications of each platform.  
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Case Study Operation ID #Operation #Capture # Pixels 

CS1 

1 8 
1 5,477 

2 10,769 

2 12 
1 15,753 

2 24,464 

3 15 1 8,082 

4 20 1 9,635 

CS2 Complete Dataset 74,180 

CS3 

1 8 1, 2 57,934 

2 12 1, 2 33,963 

3 15 1 66,098 

4 20 1 64,545 

Table 5-1: Total number of labelled pixels per each case study 

Feature GTX 960M Tesla K40 

CUDA capability 5.0 3.5 

Global Memory (MB) 2,002 11,441 

Multiprocessors (MP) 5 15 

CUDA Cores/MP 128 192 

GPU Max clock (MHz) 1,176 745 

Memory clock rate (MHz) 2,505 3,004 

Memory Bus Width (bit) 128 384 

L2 Cache Size (Bytes) 2,097,152 1,572,864 

Total amount of constant memory (Bytes) 65,536 65,536 

Total amount of shared memory per block (Bytes) 49,152 49,152 

Total number of registers available per block 65,536 65,536 

Maximum number of threads per multiprocessor 2,048 2,048 

Maximum number of threads per block 1,024 1,024 

Feature I7-6700HQ Xeon E31225 

Cores Quad core Quad core 

Clock speed (GHz) 2.6  3.2 

Turbo clock speed (GHz) 3.5 3.6 

Threads 8 4 

L2 cache (MB) 1 1 

L3 cache (MB) 6 8 

Manufacture process (nm) 14 22 

Table 5-2: Specifications of the testing platforms 

5.2 BOOTSTRAP ACCELERATION 

In this chapter, we will compare the results obtained by the bootstrap implementation, both 
GPU and Ranger. For this test, we do not need the HELICoiD database because the bootstrap 
function only generates a random learning set where the result is an array with sample IDs. The 
number of samples selected are in a range between 7500 and 120000 samples (7500, 15000, 30000, 
50000, 75000 and 120000). The number of trees selected covers the range between 250 to 1000 
(250, 500, 750 and 1000). 

As the GPU of the laptop is more limited in global memory than the GPU of the server, the first 
test is limited to a maximum of 120,000 samples and 1,000 trees. Table 5-3 shows the computational 
time results of the bootstrap test executed in the laptop, where an average speedup of 1.62 is 
obtained. Table 5-4 represents the test results executed in the IUMA’s server, where an average 
speedup of 4.31 is obtained.  
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Figure 5-1 shows the comparison between the results generated using the GTX 960M and the 
Tesla K40 where it can be seen that the performance of the GTX 960M descends drastically if the 
number of trees is higher than 750. However, Tesla K40 does not share this behavior. This fact has 
an explanation: it depends of the number of Stream Multiprocessor (SMX) that the GPUs has. Such 
as we see in Table 2-2, the Tesla K40 has 16 SMX units and this is the main reason why it gets a 
better performance than the GTX 960M which has only 8 SMX units. As it has been seen 
previously, the SMX schedules threads in groups of 32 parallel threads called warps and each SMX 
executes one block at the same time.  

In the bootstrap kernel, we generate as many blocks as trees have the RF, meaning that with 750 
trees we generate 750 blocks in X axis. Such as we can see, the number of SMX is limited in both 
GPUs and for this reason the GPU must share resources for all blocks. When sharing resources, it is 
necessary a control for this task, which can have serious repercussion to the system. As we can see 
in Figure 5-1, GTX 960M has to invest too much computational time in the synchronization of the 
different blocks with the respective resources when the number of blocks is higher than 750. On the 
other hand, we can appreciate that the bootstrap kernel in GTX 960M is useful when we use a forest 
in the range of 250-500 trees and its optimal performance is achieved when huge datasets are used.  

Tesla K40 does not suffer the same problems as the GTX960M. In addition to the higher 
number of SMX, Tesla K40 seems to perform better with the synchronization of a larger number of 
blocks. 

 

nTree nSamples 
Sequential Time (C code) (s) 

CPUTime  
(i7-6700HQ 2.6 GHz) 

Parallel Time (CUDA) (s) 
GPUTime  

(GTX 960M) 
SpeedUp 

250 7,500 0.093184 0.066360 1.40 

250 15,000 0.164743 0.078874 2.09 

250 30,000 0.321110 0.116051 2.77 

250 50,000 0.522073 0.167799 3.11 

250 75,000 0.786342 0.212565 3.70 

250 120,000 1.259975 0.340994 3.70 

500 7,500 0.157502 0.170702 0.92 

500 15,000 0.312735 0.203628 1.54 

500 30,000 0.633309 0.278684 2.27 

500 50,000 1.085661 0.379697 2.86 

500 75,000 1.586806 0.484595 3.27 

500 120,000 2.525299 0.716861 3.52 

750 7,500 0.235407 2.148555 0.11 

750 15,000 0.468209 2.197597 0.21 

750 30,000 0.928312 2.311009 0.40 

750 50,000 1.551004 2.448726 0.63 

750 75,000 2.332393 2.638155 0.88 

750 120,000 3.782006 2.983854 1.27 

1,000 7,500 0.319996 4.258782 0.08 

1,000 15,000 0.624503 4.331570 0.14 

1,000 30,000 1.238414 4.476360 0.28 

1,000 50,000 2.057585 4.665802 0.44 

1,000 75,000 3.108375 4.924184 0.63 

1,000 120,000 5.040401 5.388656 0.94 

  
Average Speed-up: 1.62 

Table 5-3: Testing bootstrap kernel in GTX 960M 
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nTree nSamples 
Sequential Time (C code) (s) 

CPUTime  
(Intel Xeon E31225 V3 3.2 GHz) 

Parallel Time (CUDA) (s) 
GPUTime  

(Tesla K40) 
SpeedUp 

250 7,500 0.091130 0.023506 3.88 

250 15,000 0.175958 0.043638 4.03 

250 30,000 0.367556 0.083197 4.42 

250 50,000 0.586500 0.143618 4.08 

250 75,000 0.880229 0.211027 4.17 

250 120,000 1.431666 0.347052 4.13 

500 7,500 0.178603 0.044786 3.99 

500 15,000 0.354499 0.079807 4.44 

500 30,000 0.707062 0.168293 4.20 

500 50,000 1.193473 0.286314 4.17 

500 75,000 1.757869 0.432982 4.06 

500 120,000 2.822436 0.690042 4.09 

750 7,500 0.267183 0.065586 4.07 

750 15,000 0.526066 0.126529 4.16 

750 30,000 1.057218 0.257204 4.11 

750 50,000 1.767521 0.432125 4.09 

750 75,000 2.655239 0.642739 4.13 

750 120,000 4.271583 1.027972 4.16 

1,000 7,500 0.354081 0.083752 4.23 

1,000 15,000 0.706979 0.169215 4.18 

1,000 30,000 1.404332 0.343160 4.09 

1,000 50,000 2.338026 0.574334 4.07 

1,000 75,000 3.510987 0.864581 4.06 

1,000 120,000 5.647008 1.369967 4.12 

  
Average Speed-up: 4.31 

Table 5-4: Testing bootstrap kernel in Tesla K40 

 

Figure 5-1: Testing bootstrap kernel comparison (GTX 960M vs. Tesla K40).  
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The first test was limited by the memory of GTX960M. For this reason, we generated a second 
test only focused in the Tesla K40 where we used a bigger dataset (between 50,000 and 500,000 
samples) than the previous test to perform the simulations. The results of this test are presented in 
Table 5-5 and Figure 5-2. As we can see in Figure 5-2, the second test just confirm us that this 
kernel is optimal when using a huge dataset, in which we can achieve an average speed-up factor of 
2.88. 

nTree nSamples 
Sequential Time (C code) (s) 

CPUTime  
(Intel Xeon E31225 V3 3.2 GHz) 

Parallel Time (CUDA) (s) 
GPUTime  

(Tesla K40) 
SpeedUp 

250 50,000 0.601531 0.193292 3.11 

250 100,000 1.215109 0.353639 3.44 

250 200,000 2.42959 0.695672 3.49 

250 300,000 3.534034 1.062629 3.33 

250 400,000 4.73703 1.386039 3.42 

250 500,000 5.916897 1.659994 3.56 

500 50,000 1.155681 0.416077 2.78 

500 100,000 2.341504 0.734769 3.19 

500 200,000 4.702039 1.412664 3.33 

500 300,000 7.073178 2.140107 3.31 

500 400,000 9.459429 2.781975 3.40 

500 500,000 11.855447 3.335857 3.55 

750 50,000 1.734538 1.448463 1.20 

750 100,000 3.508167 1.925221 1.82 

750 200,000 7.056159 2.921789 2.42 

750 300,000 10.611689 4.014368 2.64 

750 400,000 14.174089 4.975038 2.85 

750 500,000 17.769304 5.794928 3.07 

1,000 50,000 2.311743 2.585877 0.89 

1,000 100,000 4.680634 3.213049 1.46 

1,000 200,000 9.404986 4.527513 2.08 

1,000 300,000 14.164496 5.972424 2.37 

1,000 400,000 18.905916 7.243635 2.61 

1,000 500,000 23.649113 8.333215 2.84 

  
Average Speed-up: 2.88 

Table 5-5: Testing bootstrap kernel in Tesla K40 with huge datasets. 

 
Figure 5-2: Testing bootstrap kernel in Tesla K40 with huge datasets. 
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5.3 FINDBESTSPLIT ACCELERATION 

This section will present the results obtained in the acceleration of the findBestSplit kernel. In this 
test, we need information to be able to perform the calculation to find the best possible split. For 
this reason, we use the datasets of HELICoiD project in order to perform the experiments with a 
real dataset composed by hyperspectral samples. As we explained before, these datasets are divided 
in three different cases studies (CS) and our tests have been divided per CS. Likewise, these tests are 
divided into two tables, one for each platform where we are testing the kernel (laptop and IUMA’s 
server). 

5.3.1 Case Study 1 

Table 5-6 and Table 5-7 present the time results and speedup factor obtained by the findBestSplit 
kernel using the sequential code in C and the parallel code employing the two platforms, laptop and 
IUMA’s server respectively, using the CS1 datasets. Figure 5-3 shows the graphical comparison 
between the results obtained using the laptop versus the IUMA’s server. 

 

nTree nSamples 
Sequential Time (C code) (s) 

CPUTime  
(i7-6700HQ 2.6 GHz) 

Parallel Time (CUDA) (s) 
GPUTime  

(GTX 960M) 
SpeedUp 

3 5,477 0.166216 0.028331 5.87 

6 5,477 0.352264 0.054414 6.47 

12 5,477 0.717855 0.107595 6.67 

18 5,477 1.046782 0.158752 6.59 

24 5,477 1.381691 0.214333 6.45 

3 8,082 0.364301 0.045905 7.94 

6 8,082 0.736120 0.092084 7.99 

12 8,082 1.431020 0.184814 7.74 

18 8,082 2.143636 0.278408 7.70 

24 8,082 2.937000 0.371413 7.91 

3 9,635 0.479328 0.054612 8.78 

6 9,635 1.001172 0.111768 8.96 

12 9,635 1.931148 0.223908 8.62 

18 9,635 3.012326 0.344104 8.75 

24 9,635 3.922742 0.458407 8.56 

3 10,769 0.622280 0.074141 8.39 

6 10,769 1.363768 0.153332 8.89 

12 10,769 2.605362 0.289277 9.01 

18 10,769 4.032816 0.424822 9.49 

24 10,769 5.406466 0.576733 9.37 

3 15,753 1.213798 0.122570 9.90 

6 15,753 2.469423 0.246133 10.03 

12 15,753 5.113555 0.478722 10.68 

18 15,753 7.772578 0.765859 10.15 

24 15,753 10.42862 1.028869 10.14 

3 24,464 2.911491 0.261690 11.13 

6 24,464 5.223429 0.498381 10.48 

12 24,464 12.40471 1.043797 11.88 

18 24,464 16.35122 1.606170 10.18 

24 24,464 21.29328 2.172736 9.80 

  
Average Speed-up: 8.82 

Table 5-6: Testing findBestSplit kernel with CS1 datasets in laptop (i7 6700HQ with GTX 960M) 
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nTree nSamples 
Sequential Time (C code) (s) 

CPUTime  
(Intel Xeon E31225 V3 3.2 GHz) 

Parallel Time (CUDA) (s) 
GPUTime  

(Tesla K40) 
SpeedUp 

3 5,477 0.208499 0.079809 2.61 

6 5,477 0.407510 0.159099 2.56 

12 5,477 0.808518 0.251906 3.21 

18 5,477 1.217964 0.395985 3.08 

24 5,477 1.624718 0.499840 3.25 

3 8,082 0.423988 0.145437 2.92 

6 8,082 0.856488 0.299945 2.86 

12 8,082 1.699788 0.475895 3.57 

18 8,082 2.518180 0.747115 3.37 

24 8,082 3.413396 0.942992 3.62 

3 9,635 0.575933 0.200741 2.87 

6 9,635 1.151098 0.393828 2.92 

12 9,635 2.322173 0.656389 3.54 

18 9,635 3.434160 0.983800 3.49 

24 9,635 4.632244 1.272101 3.64 

3 10,769 0.711774 0.271501 2.62 

6 10,769 1.411162 0.574780 2.46 

12 10,769 2.852185 0.927910 3.07 

18 10,769 4.231031 1.396985 3.03 

24 10,769 5.700045 1.797260 3.17 

3 15,753 1.409402 0.467919 3.01 

6 15,753 2.815423 0.993704 2.83 

12 15,753 5.609884 1.587015 3.53 

18 15,753 8.368161 2.424578 3.45 

24 15,753 11.39263 3.131281 3.64 

3 24,464 3.022051 0.972542 3.11 

6 24,464 6.104473 1.963285 3.11 

12 24,464 12.46993 3.377254 3.69 

18 24,464 18.16799 4.750176 3.82 

24 24,464 24.13288 6.112912 3.95 

  
Average Speed-up: 3.20 

Table 5-7: Testing findBestSplit kernel with CS1 datasets in IUMA’s server (Xeon E31225 with Tesla K40) 

 

Figure 5-3: Testing findBestSplit kernel with CS1 datasets comparison (laptop vs. IUMA’s server) 
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5.3.2 Case Study 2 

Table 5-8 and Table 5-9 present the time results and speedup factor obtained by the findBestSplit 
kernel using the sequential code in C and the parallel code employing the two platforms, laptop and 
IUMA’s server respectively, using the CS2 dataset. Figure 5-4 shows the graphical comparison 
between the results obtained using the laptop versus the IUMA’s server. 

 

nTree nSamples 
Sequential Time (C code) (s) 

CPUTime  
(i7-6700HQ 2.6 GHz) 

Parallel Time (CUDA) (s) 
GPUTime  

(GTX 960M) 
SpeedUp 

3 74,180 19.535107 1.509968 12.94 

6 74,180 40.331463 3.350480 12.04 

12 74,180 76.312996 7.014941 10.88 

18 74,180 117.095947 11.012700 10.63 

24 74,180 156.574646 14.978607 10.45 

  
Average Speed-up: 11.39 

Table 5-8: Testing findBestSplit kernel with CS2 datasets in laptop (i7 6700HQ with GTX 960M) 

 

nTree nSamples 
Sequential Time (C code) (s) 

CPUTime  
(Intel Xeon E31225 V3 3.2 GHz) 

Parallel Time (CUDA) (s) 
GPUTime  

(Tesla K40) 
SpeedUp 

3 74,180 23.693186 5.142533 4.61 

6 74,180 46.965099 10.825226 4.34 

12 74,180 91.503319 19.904064 4.60 

18 74,180 136.435379 29.349756 4.65 

24 74,180 180.134369 38.606590 4.67 

  
Average Speed-up: 4.57 

Table 5-9: Testing findBestSplit kernel with CS2 datasets in IUMA’s server (Xeon E31225 with Tesla K40) 

 

 
Figure 5-4: Testing findBestSplit kernel with CS2 dataset comparison (laptop vs. IUMA’s server) 
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5.3.3 Case Study 3 

Table 5-10 and Table 5-11 present the time results and speedup factor obtained by the 
findBestSplit kernel using the sequential code in C and the parallel code employing the two platforms, 
laptop and IUMA’s server respectively, using the CS3 datasets. Figure 5-5 shows the graphical 
comparison between the results obtained using the laptop versus the IUMA’s server. 

 

nTree nSamples 
Sequential Time (C code) (s) 

CPUTime  
(i7-6700HQ 2.6 GHz) 

Parallel Time (CUDA) (s) 
GPUTime  

(GTX 960M) 
SpeedUp 

3 33,963 5.184504 0.424273 12.22 

6 33,963 10.809633 0.899532 12.02 

12 33,963 21.073154 1.872147 11.26 

18 33,963 32.202522 2.974596 10.83 

24 33,963 42.188377 3.876581 10.88 

3 33,963 5.211975 0.424135 11.44 

6 33,963 10.736996 0.905671 11.28 

12 33,963 21.392807 1.904726 11.14 

18 33,963 31.994953 2.950963 11.11 

24 33,963 43.393173 3.962756 11.17 

3 66,098 16.634384 1.298497 11.23 

6 66,098 32.384205 2.727051 11.19 

12 66,098 68.413177 5.600777 11.17 

18 66,098 108.289284 8.734106 11.17 

24 66,098 135.899902 11.023503 11.19 

3 64,545 14.938005 1.197955 11.19 

6 64,545 30.173466 2.597006 11.18 

12 64,545 58.758015 5.470393 11.18 

18 64,545 98.624908 8.289091 11.18 

24 64,545 118.805336 11.417547 11.18 

3 57,934 11.672660 0.920275 11.18 

6 57,934 25.465443 2.048625 11.18 

12 57,934 53.526726 4.704114 11.18 

18 57,934 73.213020 7.131975 11.18 

24 57,934 98.803253 9.593641 11.18 

3 57,934 12.070780 0.958238 11.18 

6 57,934 23.657591 2.028787 11.18 

12 57,934 47.059811 4.446221 11.18 

18 57,934 73.401405 7.074694 11.18 

24 57,934 97.153702 9.462690 11.18 

  
Average Speed-up: 11.23 

Table 5-10: Testing FindBestSplit kernel with CS3 datasets in laptop (i7 6700HQ with GTX 960M) 
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nTree nSamples 
Sequential Time (C code) (s) 

CPUTime  
(Intel Xeon E31225 V3 3.2 GHz) 

Parallel Time (CUDA) (s) 
GPUTime  

(Tesla K40) 
SpeedUp 

3 33,963 9.282999 1.687833 5.50 

6 33,963 19.673382 2.896021 6.79 

12 33,963 38.241749 15.756333 2.43 

18 33,963 56.075256 7.850453 7.14 

24 33,963 74.523392 10.498322 7.10 

3 33,963 9.373720 1.761651 5.79 

6 33,963 19.461369 2.843697 5.85 

12 33,963 38.148643 18.761877 5.66 

18 33,963 59.003113 8.459873 6.31 

24 33,963 73.466690 20.490589 6.14 

3 66,098 24.004589 3.887309 5.95 

6 66,098 56.794464 15.451085 5.98 

12 66,098 108.844879 28.516108 6.01 

18 66,098 164.178741 22.498653 6.08 

24 66,098 219.618484 29.230730 6.03 

3 64,545 20.835800 12.303882 6.01 

6 64,545 51.068466 7.987484 6.02 

12 64,545 104.726059 16.761984 6.03 

18 64,545 167.044647 31.439022 6.04 

24 64,545 222.590393 33.750046 6.03 

3 57,934 22.543921 4.031380 6.03 

6 57,934 38.713554 5.726884 6.03 

12 57,934 88.190231 11.805882 6.03 

18 57,934 131.492386 17.413771 6.03 

24 57,934 174.076813 25.439869 6.03 

3 57,934 26.395317 10.724771 6.03 

6 57,934 47.414055 6.773387 6.03 

12 57,934 82.160934 24.553497 6.03 

18 57,934 135.53183 36.214668 6.03 

24 57,934 162.501053 40.027287 6.03 

  
Average Speed-up: 5.97 

Table 5-11: Testing FindBestSplit kernel with CS3 datasets in IUMA’s server (Xeon E31225 with Tesla K40) 

 

Figure 5-5: Testing findBestSplit kernel with CS3 datasets comparison (laptop vs. IUMA’s server) 



Implementation of Hyperspectral Image Classification Algorithms for Brain Tumour Detection using Graphical Processing Units (GPUs) 

 

 

  

Page 74 of 84 

 

5.3.4 Summary of the findBestSplit kernel results 

These three different tests have shown that the kernel works perfectly, accelerating the internal 
process of selecting the best candidate and the best threshold for the split node. All tests have been 
verified. The sequential code and the parallel code generate the same results. 

Unlike the bootstrap kernel, the findBestSplit kernel has better performance in GTX 960M than Tesla 
K40 (see Figure 5-6). This fact is produced because this kernel has a grid with less variability than 
the bootstrap kernel, the number of block in Y axis is fixed and the range of blocks in X axis is much 
smaller than the range in the bootstrap kernel. As a conclusion, we can understand that we are 
misusing the resources of Tesla K40. GTX 960M, with its higher clock frequency but fewer 
resources (registers, global memory, CUDA cores, etc.), are being benefited in this comparison using 
this kernel.  

The number of blocks in X axis can be higher than the ones selected for the experiments (3, 6, 
12, 18 and 24), but this range of possible features (mtry) should be selected depending on the size of 
the dataset features (129 in our case). The possible features must be randomly selected. Using a too 
high mtry value could have negative repercussions on the randomness of the Random Forest 
algorithm. 

Finally, we have demonstrated that the findBestSplit kernel works correctly and it has a better 
performance with a huge number of samples in the non-terminal node, reaching to achieve in the 
best case a speedup factor of 11. As it can be seen in Figure 5-6, where a summary of the results 
obtained in the whole dataset for all the case studies is presented. When the dataset increases the 
number of samples, the differences between the time consuming also increase.  
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Figure 5-6: Summary of the results obtained in each CS with the findBestSplit kernel (laptop vs. IUMA’s server).  

5.4 SUMMARY 

In this chapter, the bootstrap kernel and findBestSplit kernel implementations have been analysed 
achieving good results in both platform, laptop and IUMA’s server. 

The bootstrap kernel has showed excelent result versus the bootstrap implementation using Ranger. 
We proposed to generate the learning set of different trees during the initialization of the forest in 
order to construct multiple trees by setting the learning set. It can be only used if Ranger option 
generates a bootstrap learning set without replacement.  

Figure 5-1 shows a higher difference between GTX 960M and Tesla K40 from 750 trees 
onwards. The main reason of this result is the number of SMXs of both GPUs. As the number of 
SMX is limited, and each SMX can only execute one block at the same time, it is necessary a control 
to share the SMX between all the blocks. This task can have serious negative repercussion to the 
system and, in this case, GTX 960M has to invest too much computational time in the 



Implementation of Hyperspectral Image Classification Algorithms for Brain Tumour Detection using Graphical Processing Units (GPUs) 

 

 

  

Page 76 of 84 

 

synchronization of the different blocks with the respective resources when the number of blocks is 
higher than 750. 

 Regarding findBestSplit kernel, GTX960M exhibits better performance than Tesla K40 (see Figure 
5-6). As a conclusion, we can understand that we are mishandling the resources of Tesla K40. GTX 
960M, with a higher clock frequency but fewer resources, produces better results. However, it could 
be improved by using multiple CUDA streams, because the number of blocks in X axis cannot be 
much higher than the test selection as using a too high mtry value could have negative repercussions 
on the randomness of the Random Forest algorithm. 
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CHAPTER 6:  CONCLUSIONS AND ON-GOING 
WORK 

6.1 CONCLUSIONS 

In this master thesis, the main goal was the implementation of a classification algorithm in a 
GPU to accelerate the training and the classification process of hyperspectral images. For this 
purpose, we had to study hyperspectral images and the advantages of this technology compared to 
the current techniques employed for cancer detection. We focused our efforts on the supervised 
pixel-wise algorithms of machine learning, especially the Random Forest (RF) algorithm. 

RF has demonstrated to be a good candidate due to the accurate results that this method 
generates in different scopes, especially in the computer vision community where RF is very 
popular. This method allows quick predictions but requires a long time-consuming for the training 
phase with huge datasets, due to the high computational cost of this task. In conclusion, the training 
phase must be the priority in the acceleration of the algorithm. Chapter 2.3.1.1.1 contains the 
information about the specific phases of the training parts of the RF algorithm, for instance the Split 
selection phase. 

The acceleration platform selected for the implementation has been GPUs, which has become 
extremely popular in the high-performance computing area thanks to its massively parallel hardware 
architecture. Due to the availability in the IUMA infrastructures of a NVIDIA Tesla K40, a GPU 
development with the purpose of covering high performance parallel computing demand has been 
selected. For this reason, we have developed our kernels using the CUDA platform. The 
documentation about CUDA platform was essential for this research work. Chapter 2.5 is focused 
on the CUDA platform and chapter 2.6 introduces the characteristics of the Tesla K40 architecture. 

The RF CPU implementation (C++ code) was obtained from GitHub. Multiple RF 
implementations from GitHub were tested and finally, the Ranger implementation was selected. 
Ranger is a RF algorithm optimized for high dimensional data and large number of features. The 
Ranger implementation was studied and verified in section 4.2. During the Ranger implementation 
study, different bottlenecks were identified (see section 4.3.1). As a result, three bottlenecks were 
recognized: two bottlenecks during forest initialization and one bottleneck in the tree growing phase. 
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In the GPU implementation, the bottleneck acceleration kernels were implemented. One bottleneck 
was discarded because the GPU is not an optimal option in this case. The use of the GPU implies a 
communication between different threads, checking that they are not repeating values, and thus 
having a serious negative repercussion in the algorithm performance. In chapter 4.4.1 and 4.4.2, the 
different kernels implementations were explained. 

In conclusion, the bootstrap kernel has a great result versus the bootstrap in Ranger. We propose to 
generate the learning set of different trees during the initialization of the forest in order to construct 
multiple trees by setting the learning set. Testing the bootstrap kernel, we have obtained good results, 
achieving an average speedup factor of 1.62 and 4.31 using the GTX 960M GPU and Tesla K40 
GPU respectively. The differences between GTX 960M and Tesla K40 depends of the number of 
Stream Multiprocessor (SMX) available in the GPUs. When sharing resources, a control for this task 
is necessary as it can have serious negative repercussion in the system. In this case, the GTX 960M 
has to invest too much computational time in the synchronization of the different blocks with the 
respective resources when the number of blocks is higher than 750. Tesla K40 does not suffer the 
same problem. In addition to the higher number of SMXs, Tesla K40 seems to perform better with 
the synchronization of a higher number of blocks. 

Regarding to the findBestSplit kernel implementation, we have a better performance in GTX 960M, 
achieving an average speedup factor with the huge dataset of 11.39 and 4.57 using the GTX 960M 
GPU and Tesla K40 GPU respectively. For these tests, we used the HELICoiD database because 
the necessity of using actual information of our main application in order to generate the best split 
selection. In chapter 3.3, the database generation is explained. As a final conclusion, we can 
understand that we are misusing the resources of Tesla K40 and GTX960M, that has a higher clock 
frequency but fewer resources, generating better results. In any case, both GPU platforms (Tesla 
K40 and GTX960M) offer better performances than the sequential implementation in both CPUs 
platforms (Intel Xeon E31225 and i7-6700HQ).  

6.2 ON-GOING WORK 

In this Master Thesis, GPUs for general purpose and the CUDA platform were studied in order 
to generate a CUDA solution for a Random Forest algorithm. In this case, the Ranger 
implementation was analysed and different bottlenecks were identified. As conclusion, we were able 
to generate some solutions for the different bottlenecks identified in Ranger. However, currently we 
are working in introducing the developed CUDA kernels in the Ranger algorithm. 

For handling the different CUDA kernels, a handler object was developed: the CUDAUtility 
object. This handler object uses the Singleton pattern, which restricts the instantiation of a class to 
one instance. Every class that uses CUDA functionalities must get an instance of the CUDAUtility 
object but the instance is always the same one and it cannot be copied. 

At this moment, the CUDAUtility has been introduced in the Ranger implementation but it has 
demonstrated poor performance. The bootstrap kernel is properly working introduced in the 
algorithm, but the findBestSplit kernel does not exhibit the same behaviour as the multiple calls to this 
kernel is deteriorating the performance of the Ranger algorithm. Currently, CUDA kernels are 
working in a default stream and we are working on a solution using multiple streams that can solve 
the current problem. Using the multiple stream solution, we can take advantage of the efficiently 
multi-threading of the Ranger implementation. 
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