Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/77424
Título: | Técnicas de reconocimiento automático de patrones aplicadas a imágenes hiperespectrales médicas | Autores/as: | Ortega Sarmiento, Samuel | Director/a : | Marrero Callicó, Gustavo Iván Camacho Galán, Rafael |
Clasificación UNESCO: | 3325 Tecnología de las telecomunicaciones 3314 Tecnología médica |
Fecha de publicación: | 2016 | Proyectos: | Hyperspectral Imaging Cancer Detection (Helicoid) (Contrato Nº 618080) | Resumen: | Hyperspectral imaging is an emerging technology for medical diagnosis. Some previous studies have employed this technology for detecting cancer diseases. In this research work, a multidisciplinary team compounds by pathologists and engineers present a proof of concept of using hyperspectral imaging analysis in order to detect human brain tumour tissue inside pathological slides. The samples were acquired from four different patient diagnosed with brain cancer, specifically with high-grade gliomas. The hyperspectral capture system consists on a hyperspectral camera coupled with a microscope. This system works in the VNIR spectral range (from 400 nm to 1000 nm) with a spectral resolution of 3 nm. The images where then processed in order to remove the effect caused by the acquisition system. Later, and based on the diagnostic provided by pathologist, a spectral dataset containing only labelled spectra from normal and tumour tissue was created. The data were then processed using three different supervised learning algorithms: Support Vector Machines, Artificial Neural Networks and Random Forests. The capabilities of discriminating between normal and tumour issue have been evaluated in three different scenarios, where the inter-patient variability of data was or not taken into account. The results achieved in this research study are promising, showing that it is possible to distinguish between normal and tumour tissue exclusively attending to the spectral signature of tissue. | Facultad: | Escuela de Ingeniería de Telecomunicación y Electrónica | Instituto: | IU de Microelectrónica Aplicada | Titulación: | Máster Universitario en Tecnologías de Telecomunicación | URI: | http://hdl.handle.net/10553/77424 |
Colección: | Trabajo final de máster |
En el caso de que no encuentre el documento puede ser debido a que el centro o las/os autoras/es no autorizan su publicación. Si tiene verdadero interés en el contenido del mismo, puede dirigirse al director/a o directores/as del trabajo cuyos datos encontrará más arriba.
Vista completaVisitas
88
actualizado el 24-ago-2024
Descargas
64
actualizado el 24-ago-2024
Google ScholarTM
Verifica
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.