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Summary 

 

 

 

 

Hyperspectral imaging is an emerging technology for medical diagnosis. Some 
previous studies have employed this technology for detecting cancer diseases. In 
this research work, a multidisciplinary team compounds by pathologists and 
engineers present a proof of concept of using hyperspectral imaging analysis in 
order to detect human brain tumour tissue inside pathological slides. The samples 
were acquired from four different patient diagnosed with brain cancer, specifically 
with high-grade gliomas. The hyperspectral capture system consists on a 
hyperspectral camera coupled with a microscope. This system works in the VNIR 
spectral range (from 400 nm to 1000 nm) with a spectral resolution of 3 nm. The 
images where then processed in order to remove the effect caused by the acquisition 
system. Later, and based on the diagnostic provided by pathologist, a spectral 
dataset containing only labelled spectra from normal and tumour tissue was 
created.  

The data were then processed using three different supervised learning 
algorithms: Support Vector Machines, Artificial Neural Networks and Random 
Forests. The capabilities of discriminating between normal and tumour tissue have 
been evaluated in three different scenarios, where the inter-patient variability of 
data was or not taken into account.  The results achieved in this research study are 
promising, showing that it is possible to distinguish between normal and tumour 
tissue exclusively attending to the spectral signature of tissue. 
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Resumen 

 

 

 

 

Las imágenes hiperespectrales son una tecnología emergente en el campo de la 
medicina debido a su capacidad de detectar la composición química de distintos 
materiales de forma no invasiva. Algunos estudios previos ya han empleado esta 
tecnología para la detección de cáncer. En este trabajo de investigación, un equipo 
multidisciplinar compuestos por patólogos e ingenieros presentan una prueba de 
concepto donde se emplea el análisis de imágenes hiperespectrales con el fin de 
detectar tejido tumoral en muestras histológicas. Las muestras usadas en este 
estudio han sido obtenidas de cuatro pacientes diferentes a los que han 
diagnosticado previamente cáncer cerebral, más específicamente gliomas de alto 
grado. El sistema de captura hiperespectral consiste en una cámara hiperespectral 
acoplada a un microscopio. Este sistema funciona en el rango espectral VNIR (de 
400 nm a 1000 nm) con una resolución espectral de 3 nm. Las imágenes se han 
procesado con el fin de eliminar cualquier efecto causado por el sistema de 
adquisición, independizando la medida del sistema de captura. A continuación, y 
tomando como base en el diagnóstico proporcionado por los patólogos, se ha creado 
una base de datos que contiene únicamente la información espectral de cada tejido 
y la etiqueta que define el diagnostico de cada tipo de tejido (sano o tumoral). 

Los datos se han procesado utilizando tres algoritmos de aprendizaje 
supervisado diferentes: Support Vector Machines, Redes Neuronales Artificiales y 
Random Forests. Las capacidades de discriminación entre tejido normal y tumoral 
se han evaluado en tres escenarios diferentes, donde la variabilidad inter-paciente 
de los datos ha sido o no tenida en cuenta. Los resultados obtenidos en este estudio 
de investigación son prometedores, mostrando que es posible distinguir entre el 
tejido normal y tumoral exclusivamente atendiendo a la firma espectral del tejido. 
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Chapter 1: Introduction 

1.1 Context 

The main motivation to carry out this project is the European Project HELICOID: 
Hyperspectral Imaging Cancer Detection (FP7-618080) from IUMA.  This project, 
with Dr. Gustavo Marrero Callicó as the principal investigator (PI), has the main goal 
of applying hyperspectral imaging techniques for the precise identification of 
malignant tumours during surgical procedures. The HELICoiD project aims to 
develop an experimental intraoperative setup based on non-invasive hyperspectral 
cameras connected to a platform running a set of algorithms capable of 
discriminating between healthy or tumour tissues.  

On the other hand, to understand the context of this project it is necessary to 
know that the Integrated System Design Division, DSI, from IUMA is specialized in 
the treatment of hyperspectral images. DSI team has already undergoing projects 
such as: 

CCSDS Lossless Compression IP-core Space Applications (ITT-No. AO/1-
8032/14/NL/AK) 

The main objective of this ITT (invitation to Tender) is to implement two separate 
IP-cores corresponding to the CCSDS 123 and CCSDS 121 standards respectively. 
The former corresponds to a Lossless Multispectral and Hyperspectral Image 
Compression architecture, while latter is a Lossless Data Compressor. Both IP-cores 
will be mapped for space qualified FPGAs (from Microsemi and Xilinx) and also for 
radiation hardened standard cells (180 nm ATMEL ATC18RHA). 

REBECCA: Resilient Embedded Electronic Systems for Controlling Cities under 
Atypical Situations (TEC2014-58036-C4-4-R) 

REBECCA is oriented to the Smart City paradigm. This topic brings up important 
challenges in different areas related with the sustainable development of the city 
and the provision of services to citizens. Among these areas, REBECCA focuses on 
urban security for large public spaces and/or celebration of major events. In this 
context, REBECCA works on the design of a platform for sensing and distributed 
computing of visible and multi-hyper-spectral image processing. 

ENABLE-S3: European initiative to Enable Validation for Highly Automated 
Safe and Secure Systems 

ENABLE-S3 is a strongly industry-driven project. It will pave the way for 
accelerated application of highly automated and autonomous systems in the 
mobility domains automotive, aerospace, rail, maritime and health, through 
provision of highly effective test and validation methodology and platforms. 
ENBALE-S· will help the European industry to gain leadership in the strategic field 
of autonomous systems due to faster development and test of new products. 
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HYLOC: Multispectral and Hyperspectral Image Compression System 

The objective of this industrial project is the implementation of a prototype 
suitable for its implementation on a space-qualified FPGA for the compression of 
multispectral and hyperspectral images based on the standard CCSDS-123. The 
effect of the several configuration parameters on the compression efficiency and 
hardware complexity is taken into consideration to provide flexibility in such a way 
that the implementation can be adapted to different applications scenarios. 

 

1.2 Objectives 

GLOBAL OBJECTIVES 

The main objective of this Master's Thesis is to propose and validate several 
classification models and use data mining techniques in order to obtain an 
automatic diagnostic tool for medical hyperspectral imaging. These hyperspectral 
images consist on captures from histological samples from healthy brain tissue and 
tumour previously diagnosed by a pathologist in the VNIR (400nm - 1000nm) 
spectral range. 

OPERATIVE OBJECTIVES 

 Understand the nature of the hyperspectral data in order to exploit correctly the 
main features of the available dataset. Knowing the main techniques for 
processing the hyperspectral imaging, their applications and studying the most-
suitable data mining techniques for processing this kind of data. 

 Propose different frameworks for processing and classifying hyperspectral data, 
using different classification schemes and processing techniques. 

 Evaluate the performance of the proposed frameworks and decide which of 
them are most suitable for distinguishing between healthy and tumour tissue. 

 

1.3 Methodology 

The methodology followed in this research work is related with the previously 
described objectives. This methodology can be summarized as follows. First, the 
documentation regarding hyperspectral images have been analysed, playing special 
attention to the use of this technology in the medical field. Then, a supervised 
classification framework is proposed in order to automatically distinguish between 
normal and tumour tissue using the spectral signature of tissue. Some scenarios 
have been proposed to evaluate the performance of the model. These scenarios take 
or not into account the inter-patient variability of data. Finally, the classification 
results obtained by each classifier for each scenario have been evaluated. 
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1.4 Document Overview 

This document is organized as follows: 

Chapter 1: The first chapter of this document consists on a brief introduction to 
the research work that will be described in this document. This chapter covers the 
context where this research work is developed, the objectives and a brief 
description of the methodology followed in order to achieve the objectives. 

Chapter 2: In this chapter, an introduction to the hyperspectral images is 
provided. This introduction covers the basic concepts of this technology, the most 
relevant processing techniques that are usually applied to this kind of data and the 
main applications where the hyperspectral images are useful. Finally, a review of 
the state of art involving medical hyperspectral imaging is presented and the basic 
concepts of supervised learning algorithms are provided. 

Chapter 3:  This chapter presents the materials employed in this research work, 
where the database employed in this research work is described. This dataset has 
been acquired from pathological slides that have been previously analysed by 
pathologist after brain tumour surgeries. This chapter also describes the 
foundations of the proposed processing techniques employed to extract knowledge 
from hyperspectral data. 

Chapter 4: In this part of the document the results obtained after processing the 
hyperspectral images are shown. 

Chapter 5: The last chapter sums up the conclusions achieved during the growth 
of this research work. Also the on-going work is described. 
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Chapter 2: State of Art 

2.1  Hyperspectral Imaging 

Hyperspectral Imaging (HSI), also known as imaging spectroscopy [1], is a 
technology capable of acquiring hundreds of contiguous spectral bands for a given 
scene. HSI is the combination of two technologies: spectroscopy and digital imaging. 
On the one hand, spectroscopy is the field that deals about the interaction between 
the electromagnetic radiation and matter. Meanwhile, digital imaging cares about 
acquiring snapshots from a scene. Therefore, HSI simultaneously captures the 
spatial and spectral properties from the materials inside a scene.  

The interest of this imaging technique is given by the fact that the interaction 
between the electromagnetic radiation of light with a given material is singular for 
that material. The measured spectrum from a given material is called spectral 
signature, and throw the analysis of this wavelength-dependent function it is 
possible to discriminate between different types of materials. An example of 
different spectral signatures belonging to different materials is shown in Figure 1. 
The reflectance spectrum in Figure 1 shows the spectral signature of three different 
materials (soil, water and green vegetation) from 400nm to 2500nm. It can be 
observed that it is possible to differentiate between different materials uniquely 
attending to their spectral signature.  

 

Figure 1: Spectral signature of different materials 

In order to handle the vocabulary that refers to hyperspectral images, some 

definitions must be provided. The digital representation of a hyperspectral image is 

called hypercube, and it stores both the spatial and spectral information (Figure 2.a). 

One pixel in the hyperspectral image corresponds to the spectrum from a certain 

spatial coordinate (Figure 2.b). The spectral range of a hyperspectral image is the 

portion of the electromagnetic spectrum that has been sampled when acquiring the 

hypercube. There are several standard values for the spectral range from 400nm to 

2500nm, each spectral region is fitted to a certain application. For example, 

mineralogy applications use the spectral range from 1000nm to 2500nm, since 
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vegetation analysis can be performed in the 400nm to 1000nm range. The spectral 

resolution refers to the maximum number of spectral bands that can be resolved by 

a hyperspectral camera. For example, if we have a hyperspectral camera working in 

the VNIR spectral range (from 400nm to 600nm), if the spectral resolution is 1nm, the 

camera is capable to discriminate between 600 hundred different spectral bands; 

controversy if the spectral resolution were 3nm the camera will be able to acquire 200 

bands.  Finally, the spatial resolution is defined as the size of the smallest object that 

can be recorded by the camera. It is an important feature depending on the 

application, for instance, urban area mapping requires sufficient spatial resolution to 

distinguish small spectral classes, such as cars in a street.  

 

Figure 2: Hypercube that stores the HSI 

In order to provide the reader with a briefly but robust context to hyperspectral 
images, this chapter presents the current trends in applications and digital image 
processing of hyperspectral images. 

2.1.1 Hyperspectral Imaging Applications 

The discrimination capability between different materials provided by HSI makes 
this technology very attractive in a large variety of fields. This section presents an 
overview of several HSI applications, trying to show the powerful of this technology. 
Medical applications of HIS, which is the actual context of this research study, will 
be reviewed later in this document. 

Historically, the first application of HSI was Remote Sensing. Remote Sensing 
deals with the acquisition and processing of data from the Earth's surface and aims 
to extract knowledge from this data. The goal is to identify materials, objects or 
areas attending to the spectral signature recorded by a satellite or aircrafts. Remote 
sensing applications of hyperspectral images cover many disciplines such as 
hydrology, oceanography, mineralogy, precision agriculture or military applications 
[2]. As an example of a Remote Sensing application, in Figure 3 the results of a 
research study carried out at University of California are presented [3]. In this study, 
the discrimination between invasive plants against non-invasive plants is 
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accomplished. It can be easily seen that the invasive plants (Iceplant) are identified 
and even the density of the invasive plants in each area is located.  

 
Figure 3: Invasive plants identification using HSI 

On the other hand, hyperspectral imaging has emerged as a powerful tool for 
automated food sorting and quality assessment applications. There are many ways 
of assessing food quality, such as sensory evaluation or chemical methods, but 
generally these analytical methods are time consuming and leads to the product 
destruction. Therefore, these traditional methods are not compatible with large-
scale productions. In this context, hyperspectral imaging has earned an important 
role during the recent years, proving to be an effective technique for non-destructive 
and fast analysis and evaluation of food products. Motivated by this reasons, 
hyperspectral imaging technology has been already use for quality assessment in 
meat, fish, fruit and vegetables [4][5]. One example of applying hyperspectral 
analysis in food quality assessment is presented in Figure 4 [6]. The image shows 
the results of identifying different defects in oranges. The defects detected are the 
following: insect damage (Figure 4.a), wind scarring (Figure 4.b), trips scaring 
(Figure 4.c), scale infestation (Figure 4.d), canker spot (Figure 4.e), copper burn 
(Figure 4.f), phytotoxicity (Figure 4.g), heterochromatic stripe (Figure 4.h) and 
stem-end (Figure 4.i). 
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Figure 4: Detection of different defects in oranges 

Hyperspectral imaging has been also employed in the pharmaceutical industry. 
In this field, the main goals are improving the quality control, identify drugs and 
detect counterfeit. Hyperspectral imaging has proven advantages compared with 
traditional drug analysis techniques, usually based on chemical analysis. Figure 5 
shows an interesting application in the pharmaceutical field: the detection of 
counterfeit drugs. Counterfeit drugs do not comply with the security and safety 
quality standard provided by laboratories, therefore active ingredients may differ 
from the optimal dose quantity, causing unpredictable reactions in patients. Figure 
5 (left side) shows a mixture of normal and counterfeiting pills that are hardly 
distinguishable to the naked eye. When processing the hyperspectral image of these 
drugs, it is possible to discriminate between the normal ones and the counterfeited 
ones (Figure 5, right side) [6].  

 

Figure 5: Detection of counterfeit drugs using HSI 



 

 19 

This technology has also shown good opportunities in defense and security 
applications. Several studies have employed HSI for the detection of military targets, 
such as vehicles, decoys, camouflages or landmine areas [7]. Another relevant 
application is illustrated on Figure 6, where HSI have been applied for the 
identification of chemical clouds [8]. In Figure 6 the different chemicals are 
highlighted using different colours, and the transparency level is related with the 
gas concentration in each case. 

 

Figure 6: Chemical gases releases using HSI 

2.1.2 Hyperspectral Imaging Processing 

The intrinsic characteristics of hyperspectral data arise different processing 
issues, which must be necessarily tacked under specific mathematical formalisms, 
such as classification and segmentation, spectral mixture analysis, anomaly 
detection, target detection and data compression [9]. A briefly description of each 
hyperspectral image processing techniques is provided in this section. 

Anomaly Detection algorithms in hyperspectral imaging aims to detect pixels in 
the hypercube whose spectra differ significantly from the background spectra of the 
hyperspectral image [10]. A variety of anomaly detection techniques that have been 
applied to hyperspectral images can be found in the literature. 

Meanwhile, Target Detection applications seek to identify a relatively small 
number of objects with fixed spatial or spectral characteristics inside a hypercube. 
Many of these applications involve the detection of an object or activity such as a 
military vehicle or vehicle tracks [11]. 

Spectral mixture analysis and spectral unmixing techniques are motivated due to 
the low spatial resolution of sensors for a given application, causing that the 
measured spectra in a certain pixel is a mixture of various spectrum of materials in 
the recorded scene. Unmixing techniques are intended to estimating the number of 
pure-spectral materials (called endmembers), extract their spectral signatures and 
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calculate their abundances in each pixel. Main applications of Remote Sensing 
employs this kind of techniques due to the relatively low resolution of the airbone 
sensors compared with the target size in the Earth surface. An overview of these 
techniques can be found on [12]. 

As already mentioned, the high dimensionality of multispectral and 
hyperspectral data is highly advantageous from the point of view of image analysis 
for scientific purposes. However, a challenge appears when the images are acquired 
on a satellite, where the amount of storage and the downlink bandwidth are limited. 
Data compression can alleviate this problem, by reducing the data volume prior to 
transmission to a ground station. Hyperspectral image compression has become a 
popular research field in the past years, and many different algorithms have been 
proposed for hyperspectral data compression [13].  

Classification and segmentation of hyperspectral images consists in applying 
Machine Learning techniques in order to extract useful information from the 
hyperspectral data. Supervised classification and segmentation is an important 
process in hyperspectral image processing. The goal of this kind of algorithms is to 
automatically extract some similarity criteria that allow the discrimination between 
different classes based on some features. Although the first approaches regarding 
hyperspectral image classification uniquely exploits the spectral information of each 
pixel, it has been proven that the combination of both the spatial and spectral 
characteristics of the hyperspectral data usually improve the quality of the 
predictions made by the classifier. A wide range of applications such as crop 
monitoring, urban mapping and tracking or disease detection are actually handled 
by using appropriate data and efficient classifiers [14].  

2.2 Medical Hyperspectral Imaging 

While most traditional biomedical optical imaging methods can only capture grey 
or colour images of biological samples, the targets of interest in these kinds of 
images are generally analysed by their spatial properties such as size, shape and 
texture. It has been widely recognized that the monochrome and RGB colour 
imaging methods have limitations in the early detection and identification of tissue 
abnormalities.  

On the other hand, through the spectroscopic diagnostic technology, it is possible 
to acquire an entire spectrum of a single tissue site within a wavelength region of 
interest. This method is usually referred to as the point measurement method, 
which cannot provide the spatial information of samples. According to the 
electromagnetic theory, different biochemical constituents commonly have 
different spectral signatures. These signatures are usually generated by the 
interactions between materials and electromagnetic waves, such as electron 
transition, atomic and molecular vibration or rotation. The biological and 
pathological changes in tissues and organs also have a close relationship with the 
spectra. Spectral characteristics in different wavelength regions yield a 
distinguishable spectral signature, making pathological changes distinguishable. 
Therefore, the interaction between the electromagnetic radiation and tissue carries 
quantitative information about tissue pathology [15]. 
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For this reasons, hyperspectral imaging technology has been extended to the 
biomedical engineering field to estimate the physiological status of biological 
tissues, since it can take advantage of the spatial relationships among the different 
spectra in a neighbourhood. This technology opens new prospects for life science by 
which scientists can identify and quantify the relationships among biologically 
active molecules, observe living organisms non-invasively, perform 
histopathological and fluorescent analyses, and enhance biological understanding 
of diseases. In the past decades, researchers have developed various spectral 
imaging systems for the biochemical analysis of various biological organs and 
tissues [16].  

A standard for achieving a medical hyper spectral imager system has been not yet 
established. Therefore, the most suitable kind of spectral acquisition systems 
(pushbroom, filter-based or snapshots) and their intrinsic characteristics (spectral 
range, spectral resolution and spatial resolution) vary in each research study. 
Another way of classifying medical HSI applications is attending to the diseases that 
are studied. Finally, different MHSI applications employ different processing 
techniques to extract information from the hyperspectral images. In this section, an 
overview of some research studies regarding the use of hyperspectral images for 
diagnostic issues is presented. 

In section, the state-of-art of the Medical Hyperspectral Imaging is reviewed. To 
this end, three research groups that have been worked in hyperspectral imaging in 
the medical field have been analysed.  

 

RESEARCH GROUP I: TOKYO INSTITUTE OF TECHNOLOGY 

This research group is one of the pathfinders in the use of hyperspectral imaging in 

the medical field. Radiologist, engineers and medical doctors from USA and Japan 

compose this research group. Their publications are intended to find a new way for 

disease identification in real time.  

In their first paper [17], this research group describes the use of hyperspectral 

images with twofold objectives: the detection of blood vessels and the differentiation 

between arteries and veins. The motivations are the following: first, an unexpected 

location of blood vessels during surgery may result in an accidental injury to the blood 

vessel. On the other hand, differentiating between arteries and veins is necessary in 

majority of medical procedure. This research work is based in experiments during 

abdominal surgeries carried out in pigs, where the hyperspectral images were 

captured using two hyperspectral cameras. One of the cameras works in the spectral 

range from 400 nm to 1000 nm, and the other covers the electromagnetic spectrum 

from 1000 nm to 1700 nm. The automatic identification of arteries and veins has been 

obtained using a SVM classifier. The performance on detecting arteries and veins has 

been shown good results for the aorta and cava vein. Figure 7 show synthetic images 

where the veins and arteries are remarked in red and blue colours respectively. 
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Figure 7: Identification of aorta and vena cava using HSI 

In their second research work involving hyperspectral imaging [18], they applied 

this technology for developing and intraoperative tool capable to detect intestinal 

ischemia. The intestinal ischemia can be defined as an inadequate blood flow to the 

intestine, causing an inability to absorb food and nutrients, bloody diarrheal, infection 

and gangrene. The spectral signatures of the intestinal ischemia were acquired during 

pig abdominal surgeries. Two cameras were used, covering from 400 nm to 1700 nm. 

The methodology followed in this paper to process the HSI data consisted in finding 

an optimal normalized difference index that allow the discrimination of intestinal 

ischemia over other kind of tissue. The normalized index has been employed as filters 

for the image processing. In Figure 8 the detection of the intestinal ischemia during 

the time in a surgery is shown. The ischemia regions have been highlighted using a 

black mask. The outcome of this article concludes that the selected processing 

technique is suitable for detecting intestinal ischemia during surgical procedures.  

 

Figure 8: Ischemia detection during time using HSI 

Other interesting research can be found on [19], where the authors describe the 
use of HSI for detecting human gastric cancer. This study was carried out over ten 
patients who underwent a total gastrectomy.  The hyperspectral images were 
captured ex-vivo after the resection of tumour using a camera that covers from 1000 
nm to 2500 nm. After pathologic diagnosis, the real diagnosis is compared with the 
image processing results. The hypercubes were processed using different 
techniques: a standard deviation method (that tries to enhance the difference 
between normal and tumour tissue), a normalized cancer difference index (NDCI) 
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and a supervised classifier based on SVM. Attending to the image processing results 
(Figure 9), NDCI has been shown as the technique that better suits to the 
discrimination between gastric normal and tumour tissue.  

 

Figure 9: Gastric cancer detection using HIS. (a) RGB image (b)(c) Detected cancer areas 

 

RESEARCH GROUP II: EMORY UNIVERSITY 

One of the most active research group in biomedical applications of HSI is leaded 
by Professor Baowei Fei, from the Department of Biomedical Engineer at Emory 
University. This group has been researching about exploiting hyperspectral data 
since 2012. In their first research studies they collaborated with Akabari, who was 
working with the research group described in the previous section. The main 
characteristics of the HIS research performed by this group can be summarized as 
follows. Generally, their experiments explore cancer diseases in animal subjects. 
Moreover, they usually work using an LCTF-based acquisition system in the VNIR 
spectral range, from 400nm to 1000nm. Most of their experiments have been 
carried out in-vivo during surgical procedures. Due to this fact, they research has 
exhaustively analysed which pre-processing techniques are most suitable to 
compensate the variation of the environmental conditions during the acquisition.  
Finally, the processing techniques employed in order to extract information from 
the hypercubes vary depending on each research study, but each new publication 
present novel and more sophisticated methods. In this section, most of the 
publications of this research group are briefly reviewed. 

The first research work using HSI [20] describes the acquisition and data 
processing of hyperspectral images from pathological slides. To this end, 19 mice 
were induced human head and neck metastatic cells. Then, once the tumour has 
grown, the lymph nodes and the lung tissue were histologically processed and sent 
to pathology. The pathological slides were captured using a LCTF hyperspectral 
camera working from 450 nm to 950 nm. Figure 10 shows the intensity spectra 
acquired for both type of tissue (lymph nodes and lung) and both cancerous and 
normal tissue. The spectral differences between the healthy and diseased tissue can 
be easily observed. The spectral data were processed using SVM, achieving good 
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discrimination rate between normal and tumour tissue (higher than 97% of 
specificity and 92.6% of sensitivity). The conclusions of this study reveal that MHSI 
can be used as a tool that can help pathologist to detect the cancer without an 
exhaustive examination of slides.  

 

Figure 10: Measured spectra for lymph nodes and lung 

In their second research work using this technology [21], the authors propose the 

use of hyperspectral imaging for prostate cancer detection. This study was performed 

over 11 mice that had human prostate tumour growing on their flaws. The HIS 

acquisition was performed both in-vivo (from 450 nm to 950 nm) and in-vitro (from 

420nm to 720nm). The image processing consisted on a supervised classification 

using Support Vector Machines. The results from this study, with high specificity and 

sensitivity values in both experimental setups, show that HSI is a suitable technology 

for the automatic detection of prostate cancer. Figure 11 shows the tumour area 

detected after processing the hypercubes, where cancerous tissue has been 

highlighted using a yellow colour code.  

 

Figure 11: Prostate cancer detection, in vivo and in vitro 

In [22], they explore the capability of HSI in detecting head and neck cancer. The 

experiments were performed over in-vivo mice that were induced head and neck 

tumour cells with a Green Fluorescence Protein (GFP). Tumours show green signals 

in fluorescence images due to tumour cells with GFP. The GFP spectral bands inside 
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the hyperspectral images are used to delimitate the tumour and generate a golden 

reference map of the tumour area. These bands were removed from the hypercubes 

in order to avoid their influence in the classification process.  Figure 12.a shows a RGB 

synthetic image from one hypercube. Figure 12.b shows the gold standard diagnostic 

of tumour and Figure 12.c presents the results of the classification process. A novel 

framework consisting in tensor decomposition for feature extraction and 

classification was proposed to face the image processing in this study. It has been 

proven that the proposed classification reaches a good discrimination rate between 

malignant and healthy tissue, enhancing other traditional pixel-wise classification 

methods. 

 

Figure 12: Head and neck cancer detection using HSI 

In [23] the authors present a way to validate the tumour margins detected by HSI 

using histological images. The objective of this study is to relate the macroscopic HSI 

images with the histological microscopic images, which provide the ground truth of 

cancer margins. The proposed methods extract the Principal Component Analysis 

(PCA) from the hypercube (macroscopic) and match this image with the microscopic 

histological image. Figure 13 shows the results of this study. In Figure 13.a the grey-

scaled histological is shown, Figure 13.b presents an RGB representation of the 

hypercube. Figure 13.c shows a one-band representation of the hypercube using PCA 

and finally Figure 13.d show an overlay of the hyperspectral image registered with the 

histological image. This results allows the correlation of the hypercubes with the 

golden reference provided by the pathological diagnosis.  
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Figure 13: Histological and hyperspectral images registered 

The study carried out in [24] worries about developing an aid-visualizing tool to be 

used by surgeons intraoperative. The study was based on experiments over mice with 

neck and head tumour in the spectral range from 450 nm to 950 nm. The main goal of 

this study is to apply a processing chain that cares about the environmental conditions 

inside the operation theatre. In Figure 14 the block diagram of the processing scheme 

is presented. First, a pre-processing chain is applied to the in-vivo acquired 

hypercube.  This pre-processing chain takes special attention to compensate to 

compensate the issues discovered when capturing in-vivo HSI data in a surgical 

scenario: presence of glare pixel in the image and curvature correction. Glare strongly 

affects the appearance of intraoperative images, presenting a problem for surgical 

image analysis. So far, curvature correction has to be applied in order to compensate 

the difference in the measured intensity recorded by the camera due to the elevation 

of some tissues respect to another.  Once the pre-processing chain has been applied, a 

wavelength optimization is performed in order to find a wavelength subset that 

optimally characterizes the difference between cancerous and normal tissue. Then, a 

supervised classification is performed using SVM. Finally, a spatial post-processing is 

performed. This HSI processing framework has shown a great capability on 

differentiating between normal and tumour tissue with high specificity and 

sensitivity. 
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Figure 14: Proposed framework for classifying medical HSI 

Another framework for processing hyperspectral images during surgical 

procedures is presented in [25]. The proposed novelties in this research are threefold: 

a robust pre-processing stage that compensate the environmental conditions during 

the image registration, the introduction of new features extracted from the hypercube 

in order to increase the information provided to a supervised classifier, and a feature 

selection stage capable to choose the most relevant predictors that allow an optimal 

discrimination between normal and tumour tissue. The pre-processing chain 

innovations consist in a motion correction (in order to compensate the movements in 

the scene during the acquisition of the hypercube) and a novel method for glare 

removal. Four new features have been included as new predictors together with the 

spectral data: the first and second order derivate of the spectral curve, statistical 

values extracted from the spectral curve (such as the mean, standard deviation and 

total reflectance at each pixel) and the Fourier Coefficients of the spectral data. In 

order to reduce the increased number of predictors, a feature selection method based 

on the Maximal Relevance and Minimum Redundancy criterion have been applied. 

A method that combines both the spatial and spectral characteristics of the 

hyperspectral data has been recently published [26]. The proposed method combines 

an optimal band selection method based on a pixel-wise SVM classification with a 

Minimum Spanning Forest (MSF) strategy. The model has been tested through 

classifying data acquired from in-vivo mice that were induced with head and neck 

tumour. Figure 15 shows how the classification results provide an accurate prediction 

based on the golden reference. 
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Figure 15: (a) RGB representation of mouse (b) Gold standard (c) Classification results 

Finally, in a recently published paper [], this research group have presented a 
method for estimating skin concentrations of haemoglobin and melanin. The target 
application of this study is the early detection of oral cancer. The novelty introduced 
in this study is the processing technique that aims to apply a spectral unmixing 
framework in order to decompose the hyperspectral data into chromosphore 
concentration maps. The experiments were carried out using simulated data, 
phantom blood vessels and samples acquired in-vivo. The results obtained from the 
in-vivo dataset are shown in Figure X. The hemoglobin and melanin concentration 
maps have been successfully obtained.  

 

RESEARCH GROUP III: NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY 

The third research group that is analysed in this document is compound by 
Norway researchers. Their first investigation using HSI was in 2014. Instead of using 
the classical framework for processing HSI, this group have included an inverse 
model approximation, where the optical model of the light-tissue interaction is 
simulated using the Light Transport Model. Once a spectral model of the response 
of a certain tissue is generated, it is compared with the measured spectra using a 
hyperspectral camera. They usually work analysing the optical properties of skin in 
order to diagnose different diseases. This research group is also involved in two 
European projects that employ hyperspectral imaging for medical issues: 
SEMITOCONS [28] and IACOBUS [29]. Some of the papers published by this research 
work are analysed bellow: 

In one of their first research work involving hyperspectral images [30], the authors 

aim to extract tissue properties combining an analytical model of light propagation 

with the real-time analysis of the hyperspectral images. To this end, the authors use 

an algorithm that fits the acquired hyperspectral data to an analytical skin model and 

extract information that can provide different tissue properties. A light transport 

model, that is used to obtain the diffusion reflectance as a wavelength function, was 
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employed. The skin model proposed has two layers (Figure 16) and the tissue 

properties that are estimated using the inverse modelling strategy are the melanin 

absorption in epidermis, the oxygen saturation of blood in dermis or other 

chromosphores such as water or fat. The inverse modelling was evaluated using a 

simulated reflectance spectra composed by a four-layer skin model and a Monte Carlo 

simulation. The preliminary results achieved in this study are promising, but the 

authors found problems due to the in-vivo environmental condition variations during 

the acquisition of the hypercubes.  

 

Figure 16: Two layer skin model used by [30] 

In [31] the authors propose a method for detecting high cholesterol levels by 
analysing hyperspectral images from human facial skin. This research has been 
accomplished in the context of a European Project named SEMEOTICONS [28] that 
aims to develop a cholesterol diagnosis tool based on HSI. The first stage of this 
research work was preforming a numerical simulation of human skin affected by 
hypercholesterolemia. The skin model proposed has two layers and the simulation 
of the light transport in skin tissue is based on a weighted-photon Monte Carlo 
technique. After simulating the spectra of tissue affected by cholesterol, the authors 
mixed this spectrum with the hyperspectral data of human skin. Using the Minimum 
Noise Fraction (MNF) algorithm, the MNF-eigenvector that enhances the 
visualization of tissue with high cholesterol levels was found. In order to evaluate 
this methodology, a clinical study involving 11 volunteers with different levels of 
cholesterol was carried out.  The images were acquired using a LCTF camera that 
works from 400nm to 720nm. The conclusions of this study shown that the 
proposed method provides good performance detecting lipid deposits, and releases 
that HSI is a promising technology for providing a fast diagnosis of cholesterol. 
Figure 17 shows the results of applying the previously described method. In Figure 
17.a the information of the volunteers is shown, in Figure 17.b a synthetic RGB 
image from each patient. Finally Figure 17.c show the MNF transformation of the 
hypercubes using the eigenvector that enhances the visualization of tissue with 
cholesterol. In this Figure the normal cholesterol level (up to 200mg/dl) is 
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represented in blue, the border cholesterol levels (200mg/dl – 240mg/dl) are 
presented in cyan and the high cholesterol levels (more than 240mg/dl) are shown 
in yellow.  

 

Figure 17: Detection of cholesterol using HSI 

In other research work [32], the authors aim to enhance the vessel visualization 
using HSI. Three different methods were used in order to enhance the contrast 
between vessels and background tissue. Once veins have been located, an inverse 
model technique is applied in order to estimate the depth and oxygenation of each 
blood vessel. The algorithms that have been evaluated to enhance the vein contrast 
are the Discrete Wavelet Transform (DWT), the Minimum Noise Fraction (MNF) and 
an analytical inverse model. The conclusions obtained by the authors are the 
following: both DWT and MNF provides a clear visualization of vessels, nevertheless 
MNF is a statistical method which decomposition depends on the image statistics. 
So, the results obtained through wavelet transformation are more consistent 
because DWT always use the same decomposition filters. The inverse model method 
does not enhance the results obtained using DWT or MNF. For these reasons, 
wavelet transformation has been presented as the most suitable technique for 
vessel enhanced images. Once the blood vessels have been identified, the authors 
applied an inverse modelling technique for estimating the vessel oxygenation and 
depth, showing promising results. The results of applying this technique are 
presented in Figure 18, where both the identification of blood vessels and the 
estimation of their oxygenation levels are shown.  
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Figure 18: Vessel identification (a) and oxygenation estimation (b) using hyperspectral images 

The research work described in [33] aims to develop a novel imaging technique 
for a non-invasive diagnosis of rheumatoid arthritis. This research work is part of a 
European project, IACOBUS [29], and tries to find a diagnosis alternative technology 
for the detection of arthritis. Conventional diagnostic techniques in this field are 
expensive, time consuming and require trained experts who collect and interpret 
data. Using the information about the human finger joints physiology and anatomy 
was employed to construct an analytical model of human joints. In order to simulate 
the photon transport model, a three dimensional Monte Carlo model was used. By 
analysing the simulations, it has been reached that the wavelength regions from 
800nm to 900nm and from 1050nm to 1100nm in light transmission mode can 
enhance the identification of arthritis in the human joints. It has been also concluded 
that the reflectance spectrum will not provide useful information for diagnosing 
arthritis. Although these simulations served as an important tool for understanding 
and developing an arthritis diagnosis tool based on HSI, and experimental study 
have to be carried out in order to validate the simulations. 

Outside the intensively analysed research groups, there are many researchers 
who have employed hyperspectral images for diagnosing different diseases, but 
they have not been included in this state of art review. For instance, some studies 
worrying about the detection of tumour using HSI have explored cervical neoplasia 
[34], breast cancer [35], lung cancer [36], gastric cancer [37] or tongue cancer [38].  

2.3 Supervised Learning 

Supervised learning is a field inside Machine Learning. The goal of machine 
learning is to extract knowledge from experimental data and process these data in 
order to find patterns or for decision-making issues [39]. The Machine Learning 
techniques can be classified in three major groups: supervised learning, semi-
supervised learning and unsupervised learning.  Supervised learning algorithms 
employ a given set of data with known responses (labels), and generate a model that 
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makes predictions for the response of new data. Otherwise, in unsupervised 
learning problems the response of each simple in the dataset is not known. The goal 
of unsupervised learning consists in grouping the data in different clusters based in 
some similarity criteria. Finally, semi-supervised learning methods use both 
labelled and unlabelled data to make a prediction.  

In this research work supervised classification is performed over hyperspectral 
data in order to automatically discriminate between normal and tumour tissue. This 
section provides the basic concepts involved in supervised classification.  

 The dataset for supervised classification problems consist on n pairs (𝑥𝑖, 𝑦𝑖) , 
where the instances (𝑥𝑖) are m-dimensional vectors 𝑥 ∈ 𝑅𝑚 and the target values or 
labels (𝑦𝑖) can be neither categorical values nor continuous variables. When the 
target variable is a categorical value the problem is called classification and when 
the target data is continuous the problem is called regression. The goal of supervised 
learning techniques is, given a training set, to learn a function that is able to predict 
the target value of previously unseen instances.  

The common workflow in classification problems is shown in Figure 19. The first 
stage consists on dividing the available data into two disjoints subsets: the training 
set and the test set. The training set is the set of instances that is provided to the 
classifier in order to create an input-output relationship for prediction. The test set 
is employed to assess the classifier performance, and consists on previously unseen 
instances. After splitting data into training set and test set, it is usual to extract 
meaningful features from the raw data in order to facilitate the learning task to the 
classifier. In the training stage the train set is used to build the model, and in the 
prediction stage this model is evaluated using the test set. 

 

 

Figure 19: Standard workflow for supervised learning problems 
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2.4 Summary 

This chapter introduces the reader to the basic knowledge about hyperspectral 
imaging technology, including the main processing techniques and applications. 
According to the context of this research work, the state of art of medical 
hyperspectral images have been explored. The work from three different research 
groups with a contrasted trajectory dealing with medical hyperspectral images, 
have been carefully analysed. Finally, a brief introduction to the basic concepts 
involving supervised classifiers have been presented. 
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Chapter 3: Materials and Methods 

3.1 Biological samples description 

In this research study all patients are affected by glioblastoma multiforme. 
Malignant gliomas are most common form of primary brain tumours in adults with 
a high incidence that it is between 11-12/100000 person per year in USA [40][41]. 
The three most frequent type of glioma are glioblastoma multiforme (GBM), 
anaplastic astrocytoma (AA) and anaplastic oligodendroglioma (AO). Gliomas cause 
between the 2% and 3% of cancer deaths in the whole world [40].  This type of 
tumours has in common their glial origin and their prevalent location is the 
supratentorial region. Gliomas can appear in any age range, but mainly affect adults 
between 45 and 70 years old [42]. GBM is the most frequent tumour, around 30% 
of the cases, and the most aggressive with a mean of 10 to 15 month of survival and 
a diagnostic mean age is 56 years old.  AA and AO are less frequent, around 20% and 
7% of the cases respectively, and they can appear at early mean ages, around 45 
years old, and a high survival time [42][44]. This type of tumours mainly uses the 
white matter of the brain or the cerebrospinal fluid to be disseminated and, unlike 
the other types of advanced malignant neoplasm, they are no characterized by 
expanded and generate distant metastasis.   

The most frequent clinical presentation of glioblastoma multiforme patients is a 
slowly progressive neurological deficit, typically subacute, with motor weakness, 
being the most common headache symptoms (50%) [45]. This symptom can appear 
in a holocraneal non-specific character profile or with intracranial hypertension. 
Between 30% and 50% of the patients present focal motor symptoms or signs and 
around 60% present cognitive impairment to the diagnosis. Finally, only between 
15% and 20% of the patients manifest seizures.  

There are many factors that can be associated to the survival increasing of the 
patient, such as, secondary gliomas through tumour progression, the early age of the 
patient, a highly preoperative Karnofsky score (KPS) and a suitable surgical and 
oncological treatment [46]. In this last factor, the radical resection together with the 
radiotherapy and temozolomide administration is associated with a better survival 
rates.  

The dataset employed in this study have been previously acquired in another 
research work [47]. The biological samples used in this research work consist in 
biopsies from human brain tissue resected during surgery. A sample of the tumour’s 
tissue is required for the pathologic diagnosis during or after the surgery. A biopsy 
is the removal of a small amount of tissue for the examination under a microscope 
and is the conclusive way that a brain tumour can be trustworthy diagnosed. The 
sample removed during the biopsy is analysed by a pathologist. A biopsy can be 
done as part of a surgery to remove the entire tumour or as a separate procedure if 
surgical removal of the tumour is not possible because of its location or patient’s 
health. This biopsy has followed a histological processing, whereby tissue 
specimens are prepared for sectioning, staining and diagnosis. Once biopsy has been 
diagnosed, tissue is sorted according to the Wold Health Organization (WHO) 
classification of tumours of the nervous system. 
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Figure 20: Biological samples  

In this study, 4 different patients were analysed, and 13 diagnosed pathological 
slides were available (Figure 20, left side). These pathology slides were provided by 
the Anatomy Pathology department of Doctor Negrín Hospital, at Las Palmas of Gran 
Canaria.   

In order to facilitate the labelling process of the hyperspectral data, once 
pathologists had a diagnosis for a certain tissue, they marked the regions of interest 
in the slide with a coloured pen. Tumour tissues were marked using red colour, and 
healthy tissues were marked using blue colour (Figure 20, right side). 

3.2 Acquisition system 

In order to register hyperspectral images from pathology slides, an acquisition 
system consisting on a HSI camera coupled with a microscope has been employed 
(Figure 21, left side). The hyperspectral camera used was the Specim ImSpector 
VNIR V10-E, which works in the VNIR spectral range (from 400 nm to 1000 nm) 
with a spectral resolution of 2.8 nm. It is a pushbroom camera, so to capture a whole 
hypercube, either the camera or the sample must be moved synchronously with the 
shoot of the camera. The Microscope used was the Olympus BH2-MJLT. Using this 
microscope, it is possible to do observations by transmittance or reflectance of light 
in tissue, with magnifications of 5x, 10x, 20x, 50x and 100x. It has its own source of 
light which consists in a power adjustable halogen bulb (Philips CAPSUline PRO 
13102). 

This light has been tested to emit in all the spectral range previously mentioned. 
So as to obtain a hypercube from the pathology slides, a linear-movement 
mechanism has been employed. This mechanism is based on a Sony PlayStation 3 
(PS3) BlueRay reader driver, with a movement resolution of 9 μm. This mechanism 
is synchronized with the capture of each pushbroom line of the camera. A full 
custom C++ based software has been developed to control both the camera and the 
mechanism movement. In order to attach the linear-movement mechanism into the 
microscope, a wooden flat platform has been built and replaced by the original plate 
of the microscope (Figure 21, right side). The slides were coupled to the PS3 driver 
using permanent magnets. A Graphical User Interface (GUI) has been developed to 
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provide users an easy-to-use interface, which encapsulates the complexity of the 
capture system in a single button. 

 

Figure 21: Microscopic hyperspectral acquisition system 

The following conclusions were reached from the test of the acquisition system 
developed:  

 When coupling the microscope with the HSI camera, the pushbroom line 
captured width is 4.4 μm using 5x magnification and 2.2 μm with 10x 
magnification. Due to the resolution of the stepper motor, which is of 9 μm, 
the collected hypercubes have some missing spatial information between 
each pushbroom lines captured.  

 It has been found that the microscope heavily filters the wavelengths above 
800 nm.  

 The hypercubes have only been captured using the transmittance 
observation mode and only with 5x and 10x magnifications. The sensitivity 
of the HSI camera sensor does not allow making observations neither with 
reflectance observation technique nor using the other available lenses. This 
is because the power of the light source used is not bright enough to make 
measures in the reflection mode or with higher magnification lenses. 

3.3 Hyperspectral dataset 

The spectral database described in [47] consists in 83 hypercubes in each 
magnification, 5x and 10x. Due to the high dimensionality of data and the 
computational cost associated with processing this high amount of data, in this 
research study only 19 hypercubes have been selected (all of them captured with 5x 
magnification).  In Figure 22 a RGB representation of certain hypercubes are shown. 
As previously named, tissue inside red markers have been diagnosed as tumoural, 
and tissue inside blue marker has been diagnosed as normal tissue. 
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Figure 22: RGB representation of two hypercubes used in this study 

As mentioned in the description of the acquisition system, not the whole spatial 
information can be captured by this hyperspectral camera. Due to this fact, in this 
study only the spectral information will be taken into account. If the full spatial 
information were available, we were allowed to exploit the morphological 
characteristics of tissue, and permitting to include the same criteria used by 
pathologist when they are diagnosing. Figure 23 shows a typical histological image 
used by pathologist to diagnose brain tumour. Compared with Figure 22, it can be 
seen how the histological image allow distinguishing cells, while it is not possible in 
the acquired hyperspectral images.  

 

Figure 23: Histological image from brain tissue 

 

Using this hypercubes, a region of interest (ROI) of each hypercubes have been 
defined in order to create a spectral dataset, and the useful spectral information 
have been extracted. Table 1 summarizes the spectral dataset available for each 
patient after defining the ROI and extracting the spectral data. 
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 P1 P2 P3 P4 

Normal Tissue 132367 138453 90436 - 

Tumour Tissue 122801 131830 122646 81067 

Table 1: Spectral dataset summary 

The spectral signatures for both classes and all patients are shown on Figure 24. 
These spectral signatures have been calculated as the mean spectra of each kind of 
tissue for each patient. The spectra represented using a blue line belongs to normal 
tissue and a red line is used to draw the spectra from tumour tissue. After the visual 
inspection of this spectral signatures, it can be easily noticed that there are 
significant differences between normal and tumour tissue. It can be observed that 
there are similarities between the different types of tissue among the different 
patients. In other words, the shape of the spectral signature of normal tissue is 
similar for all patients. The same trend keeps for the tumour tissue. 

 

  
(a) Patient #1 (b) Patient #2 

  
(c) Patient #3 (d) Patient #4 

Figure 24: Spectral signatures extracted from the dataset 
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3.4 Case Study description 

In order to validate supervised classification algorithms for discriminating 
between healthy and tumour tissue, three different case studies (CSs) have been 
proposed. This approaches differs in which patients are included as subject of study. 
Each case study can be accomplished using different pre-processing stages and 
different classification algorithms. These proposed scenarios are described below. 
  

CASE STUDY 1 (CS1) 

The goal of this CS is to check if the discrimination between healthy and tumour 
tissue can be performed using the available labelled data, and avoiding the inter-
patient variability of data. In other words, this means that the datasets explored in 
this CS include hypercubes from pathological slides from a single patient, where 
both type of tissue (healthy and tumour) are present. In order to avoid the inter-
patient variability of data, each patient’s data is used independently for training and 
testing a supervised classifier. 

This CS simulations will be accomplished for patient numbers’ 1, 2 and 3, because 
data need both types of tissue to perform a supervised classification between the 
two types of tissue. Patient number 4 is not included in this CS because only tumour 
samples are available.  

CASE STUDY 2 (CS2) 

In CS2 all the available labelled data are merged in a unified dataset. It means that 
a unique database is created by joining all single patient data, so in this scenario the 
inter-patient variability is taken into account. In Table 2 the description of the 
dataset used in this CS is summarized.  

 Normal Tissue Tumour Tissue 

Number of Samples 377277 442323 

Table 2: CS2 dataset description 

CASE STUDY 3 (CS3) 

This case study is the most realistic one in a diagnosis context. In this approach, 
the data from one patient is used as test set of a classification algorithm, and that 
classifier model is built using the information from the whole rest of hyperspectral 
labelled data (belonging to the other patients). This case study represents the real 
case of a new sample arriving to the pathologist laboratory, where the classification 
must be performed with a classifier trained with data from previous patients. The 
dataset description of this CS is summarized in Table 3. 

 Train Samples Test Samples 
Normal Tissue Tumour Tissue Normal Tissue Tumour Tissue 

Patient #1 254476 309956 132367 122801 
Patient #2 245447 303870 138453 131830 
Patient #3 254631 351887 90436 122646 
Patient #4 377277 361256 - 81067 

Table 3: CS3 dataset description 
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3.5 Processing Framework 

The proposed processing framework is based on a typical supervised 
classification scheme. Although it has been proven that combining both the spatial 
and spectral features of the hyperspectral images can improve the accuracy in the 
predictions, in this research work only the spectral characteristics of the data are 
taken into account. This way, the inputs of the classifier are the measured spectral 
signature from healthy and tumour pixels. The first stage consists on a 
preprocessing chain that aims to compensate the effects produced by both the 
environmental conditions and the system response of the capture system during the 
acquisition of the hypercubes. Then, a supervised classification is performed using 
three different classification methods. Finally, the performance of the classifiers is 
evaluated using standard metrics for assessing a classifier performance. This 
workflow is represented in Figure 25. This section provides the details of each stage 
of this workflow in this research work. 

 

Figure 25: Processing framework used in this research work 

3.5.1 Preprocessing 

The preprocessing stage proposed in this research work is shown in Figure 26. 
First, due to the high dimensionality of the hypercubes, that deeply slow the 
processing of data, a manual Region of Interest (ROI) selection is applied. In this 
procedure, the selection of the area of interest has been carefully performed taking 
a ROI that is a middle solution between selecting a large area (which can raise a high 
computational cost) and choosing enough relevant data inside each scene. In Figure 
27, a synthetic RGB representation of the full hypercube and the defined ROI is 
presented.  

 

Figure 26: Preprocessing chain 
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Figure 27: Original cube size and ROI selection 

The second stage of the preprocessing chain is related to the calibration of the 
image. Through the calibration the acquired image is converted from radiance 
observation to absorbance. The absorbance is used calculated by taking the ratio 
between the sample image with respect to a reference image. The reference material 
provides a measure of the instrument response function from the resultant optical 
density image set [48]. Figure 28.a presents the raw data acquired by the 
hyperspectral camera.  Figure 28.b shows the reference spectra, that has been 
acquired as the light that is captured by the camera after passing through an empty 
pathological slide. Finally the calibrated spectra, once Equation 1 have been applied 
is shown on Figure 28.c.   

𝐼𝑎𝑏𝑠 = − log
𝐼𝑟𝑎𝑤

𝐼𝑟𝑒𝑓
 Equation (1) 

   
(a) (b) (c) 

Figure 28: (a) Raw spectra (b) Reference Spectra (c) Calibrated spectra 

The next step in the preprocessing chain is performing a band reduction of the 
hypercube. The motivation is performed in two ways. In the one hand, there are 
bands that do not carry any information. In the reference spectra on Figure 28 it can 
be seen that the measured intensity is almost zero for the extreme wavelengths. This 
information is cleared in order to eliminate the meaningless information. The 
selected operating bandwidth can be observed in Figure 29.a, and covers the 
spectral range from 410 nm to 750 nm. On the other hand, the measured spectrum 
has high redundancy between contiguous bands. This fact is caused due to the high 
resolution of the camera sensor related with the diffraction capability of the optical 
grating. For the spectral system employed in this work, the spectral resolution is 
3nm and the captured spectral bands are 1040. This means that the contiguous 
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bands has been sampled each 0.6nm approximately, acquiring redundant 
information due to the impossibility of the optical system to sample the spectrum 
with that spectral resolution. In order to avoid this redundancy, the spectral bands 
are averaging in order to reduce the both the dimensionality and the redundant 
information [49]. The spectra after applying the band average can be observed in 
Figure 29.b, it can be seen that the shape does not change compared with the same 
spectra with 1040 spectral bands (Figure 28.c).  

  
(a) (b) 

Figure 29: (a) Operating bandwidth (b) Spectra after band reduction 

The next step of the proposed preprocessing chain consists in removing the 
spatially aberrated pixels caused by the presence of bad columns in the CCD used by 
the hyperspectral system. Bad columns are artefacts that appear in the read out 
progress in CCD cameras, and cause that several lines in the acquired image are not 
valid. In order to remove these artefacts from the hypercubes, a mask containing the 
location of the bad columns in the hypercube is used to avoid the pixels affected by 
the bad columns defect.  

  
(a) (b) 

Figure 30: (a) Hypercube affected by bad columns (b) Mask showing the location of bad columns 

Finally, in order to process uniquely the useful information, a way for 
discriminating between pixels that belong to the microscope light has been 
proposed.  Due to the white colour of the measured light, binarization is performed 
to a RGB image extracted from the hypercube. After manually selecting a suitable 
threshold, it is possible to locate the microscope light in order to avoid processing 
that meaningless pixels (Figure 31).  
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(a) (b) 

Figure 31: (a) Synthetic RGB from a hypercube (b) RGB image where microscope light has been removed 

3.5.2 Model Evaluation 

For classification problems, the classifier performance is usually measured as the 
error rate of the classifier. The classifier predicts the class for each instance in the 
dataset: if the class of the instance is correctly predicted it is counted as a success. 
Controversially, if the predicted label is not the same as the label of the instance that 
have been classified it is a classification error. The error rate is just the proportion 
of errors made over a whole set of instances, and it measures the overall 
performance of a classifier. 

The error rate measured over the training set is not likely to be a good indicator 
of future performance, because the classifier has been trained using the same 
training data, so the error estimation based on the training data will be optimistic. 
To predict the performance of a classifier over new data, it is necessary to assess its 
error rate on a dataset that played no part in the formation of the classifier. This 
independent dataset consisting in previously unseen data is called the test set.  

If the number of instances in the dataset is high, there is no problem. In such case 
it is possible to split the dataset into two disjoint sets with a large number of 
instances. Then, one of these subsets can be used to train the classifier and the other 
can be used to measure its performance.  

The problem appears when the available data is limited, and this is the typical 
situation in most of practical machine learning scenarios. In such situations, the 
amount of data that can be used for train and evaluate the performance of the 
classifier are limited. Generally, the larger training sample the better classifier, and 
the larger test samples, the more accurate the error estimate. So a trade-off arises: 
to find a good classifier it is advisable to use as much data for training, and to obtain 
a good error estimate it is necessary to use as much of it as possible for testing. 

In the Machine Learning literature, it is possible to find several strategies to tackle 
this problem, in this document the hold out and the cross-validation methods will 
be employed.  
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HOLD OUT: 

This method for assessing the performance of a classifier simply consists on 
selecting a certain amount of data for measuring the model performance and 
reserving the rest of instances on the training set for building the classifier. In 
practical terms, it is common to hold out one third of the data for testing and the 
remaining two-thirds for training [49]. 

This method has a lack: it is possible that neither the sample used for training nor 
testing or even both might be not representative. At least, the hold out procedure 
must guarantee that all classes are represented both in the training set and in the 
test set. This procedure is called stratification. A more general way to mitigate any 
bias caused by the particular sample chosen for holding out is to repeat the whole 
process, training and testing, several times with different random samples. The 
error rates of the different iterations are averaged to yield an overall error rate. This 
method is called repeated hold out error rate estimation [50]. 

CROSS VALIDATION: 

In the k-fold cross-validation method the whole dataset is partitioned into k 
disjoint folds. As occurs in the hold out method, it is advisable that each fold has the 
same class proportion. The basis of this method consist in using k-1 folds for training 
a classifier and the remaining for assessing its performance. This procedure is 
repeated k times varying the test set in each iteration until all folds have been used 
to evaluate the model performance. Finally, the model performance is calculated as 
the average performance of the k iterations. Figure 32 shows a graphical 
representation of this method with k = 10, where the fold used to evaluate the model 
in each iteration is highlighted in red colour.  

 

Figure 32: K-fold cross-validation example 

Extensive test on numerous different datasets, with different learning techniques 
have shown that k = 10 fold is the right number of fold to get the best estimate of 
error, and tenfold cross validation has become the standard method in practical 
terms. Nevertheless, a single tenfold cross-validation might not be enough to get a 
reliable error estimate. When seeking an accurate error estimation, it is a standard 
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procedure to repeat the tenfold cross-validation several times and average the 
results [50]. 

In this research study, 10-fold cross validation will be used as model validation 
scheme for CS1 and CS2. In CS3 is not possible to apply cross validation, so the model 
will be evaluated using hold-out validation, where the test set correspond to the 
spectral samples from one patient, and the classifier is trained using the samples 
from the other patients. 

3.5.3 Selected classification algorithms 

An extensive literature is available on pixel-wise classification of hyperspectral 
images, where each pixel is assigned to one of the classes based exclusively on its 
spectral signature. For this purpose, methods based on decision trees, neural 
networks and kernel-based methods has been widely used. These algorithms have 
to face with two main problems: the high dimensionality of data and a limited size 
of sample data. The selected algorithms for this research work are Support Vector 
Machine (SVM), Artificial Neural Networks (ANN) and Random Forest (RF). 

SVM is a kernel-based supervised algorithm that has been extensively used in the 
classification of hyperspectral images. In the bibliography, it has been proved that 
SVM provides a good performance for classifying hyperspectral data when a limited 
number of training samples are available [51]. Due to its strong theoretical 
foundation, good generalization capabilities, low sensitivity to the curse of 
dimensionality, and ability to find global classification solutions, SVM is usually 
preferred by many researchers over other classification paradigms for classifying 
hyperspectral images [15]. In this research work LIBSVM [52], integrated software 
for support vector classification, has been employed.  

Recent remote sensing literature has shown that SVM methods generally 
outperform traditional statistical and artificial neural networks methods in 
classification problems involving hyperspectral images. Nevertheless, neural 
networks has been also successfully used in the classification of hyperspectral 
images [51][53]. In the hyperspectral medical field, some studies has applied neural 
networks as classifier [54][55]. The neural network used in this research work is a 
feed forward Multilayer Perceptron (MLP) network, trained using a 
backpropagation algorithm. The MATLAB Neural Network Toolbox has been chosen 
to test the quality of these algorithms to the available data.  

The other algorithm used in this supervised classification approach is Random 
Forest. Random Forest is an ensemble classification algorithm, which constructs a 
set of classifiers and then classify new data by taking a vote of their predictions [56]. 
Some studies have shown that these ensemble methods can provide a classification 
result as accurate as other traditional classifiers, like neural networks [57]. 
Although these algorithms have not been used in the classification of medical 
hyperspectral images, in this work both algorithms will be used as pixel-wise 
classifiers. In order to test this supervised ensemble algorithms, the MATLAB 
Machine Learning ToolBox has been employed. 
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3.5.4 Evaluation Metrics 

Metrics chosen for estimating the classifier performance in this study are 
sensitivity, specificity and overall accuracy. This metrics summarizes the 
information supplied by a confusion matrix, but due to the large number of 
simulations that are being performed (there are several simulations from each case 
study, and each case study is performed using different classification algorithms), 
the confusion matrices are not provided. The evaluation metrics employed in this 
research work are sensitivity, specificity and overall accuracy. Before providing the 
definitions of these supervised classification metrics, some terms must be defined: 

 True Positive (TP): Correctly detected conditions. In other words, the result 
of the test is positive and the actual value of the classification is positive. 

 False Positive (FP): Incorrectly detected conditions. The result of the test is 
negative and the actual value of the classification is positive. 

 True Negative (TN): Correctly rejected conditions. The result of the test is 
negative and the actual value of the classification is negative. 

 False Negative (FN): Incorrectly rejected conditions. The result of the test is 
positive and the actual value of the classification is negative. 

The standard classification metrics employed in this study can be summarized as 
follows: 

Sensitivity: Is the proportion of actual positives that are correctly identified as 
positives by the classifier. It is computed as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Equation (2) 

 

Specificity: Is the proportion of the actual negatives that the classifier 
successfully tests negative for it. It is expressed as follows: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 Equation (3) 

 

Overall Accuracy: Refers to the ability of the model to correctly predict the class 
label of new or previously unseen data. Equation 4 shows formula of the overall 
accuracy metric. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 Equation (4) 

 

3.6 Summary 

In this chapter, the biological samples employed in this study have been 
presented, providing both the medical information and describing how the samples 
have been captured using a hyperspectral acquisition system. Then, the 
methodology followed in this research work has been described. First, some 
different experiments have been proposed. These experiments differ in how the 
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models are built, taking or not into account the inter-patient variability of data. 
Finally, the processing framework used in this research work is presented. This 
processing framework includes a preprocessing stage, three types of supervised 
classifiers and different model evaluation techniques. 
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Chapter 4: Results 

This chapter presents the results achieved when applying the supervised 
classification framework described on Chapter 3. These results consist in the 
performance estimation of each classifier in each Case Study. Also the computational 
cost of each classifier is shown as a measured of the time required to train and 
evaluate the performance of each classifier. 

For the SVM classifier, two different set ups have been tested: a linear kernel 
classifier and a Gaussian (Radial Basis Function, RBF) kernel. Regarding the 
topology of the neural network, several neural networks architectures varying the 
number of hidden layers, the number of neurons inside this layers and the activation 
function selected for each layer have been tested. The experimental results shown 
that the best performance is obtained using a multilayer neural network with a 
single hidden layer composed by 16 neurons, using a logistic activation function for 
this layer. A hyperbolic tangent sigmoid activation function has been selected for the 
output layer.  Finally, an ensemble of 50 different classification trees composes the 
Random Forest configuration. 

4.1 Case Study 1 

As named in Chapter 3, CS1 consists on classifying data that uniquely belongs to 
a single patient. For this reason, and due to the absence of normal tissue for patient 
number 4, only patients 1, 2 and 3 are included in this experiment. The estimation 
of the model performance has been obtained using 10-fold cross-validation. 

4.1.1 Support Vector Machines 

The results for SVM using both kernels, linear and Gaussian, are shown in Table 
4 and Table 5 respectively. It can be seen that the results achieved in this experiment 
can perfectly discriminate between normal and tumour tissue with high sensitivity 
and specificity. Comparing the results of each classifier’s configuration it can be 
observed that using the linear kernel it is possible to achieve better results than the 
Gaussian kernel with a lower computational cost. 

Patient 
Overall 

Accuracy 
Sensitivity Specificity 

Time 
(1 fold) 

Time (CV) 

P1 99.04% 99.29% 98.76% 26.06 min 4.34 hours 
P2 98.48% 98.75% 98.20% 32.99 min 5.49 hours 
P3 99.67% 99.87% 99.52% 5.42 min 0.90 hours 

Table 4: Classification results, CS1 and linear SVM 

Patient 
Overall 

Accuracy 
Sensitivity Specificity 

Time  
(1 fold) 

Time (CV) 

P1 97.34% 97.56% 97.10% 91.54 min 15.25 hours 
P2 97.18% 97.47% 96.89% 93.25 min 15.54 hours 
P3 98.78% 99.81% 98.06% 31.92 min 5.32 hours 

Table 5: Classification results, CS1 and RBF SVM 
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4.1.2 Artificial Neural Network 

The results obtained using ANN are shown on Table 6. These results outperform 
99% of overall accuracy for every patient. In terms of specificity and sensitivity 
these results show a good discrimination rate between the different classes, being 
the sensitivity and specificity values also higher than 99% in all the cases. Regarding 
the computational cost, ANN show a much lower computational cost compared with 
the SVM approaches for this CS. 

Patient 
Overall 

Accuracy 
Sensitivity Specificity Time (1 fold) Time (CV) 

P1 99.17% 99.13% 99.20% 3.59 min 0.59 hours 
P2 99.95% 99.96% 99.94% 3.75 min 0.62 hours 
P3 99.82% 99.90% 99.76% 3.06 min 0.51 hours 

Table 6: Classification results, CS1 and Neural Networks 

4.1.3 Random Forests 

Using Random Forests, it is also possible to accurately differentiate between 
normal and tumour tissue by uniquely attending to the spectral signature of each 
type of tissue. Table 7 shows the results for this classifier, where it can be observed 
that the worst classification have been obtained for patient number 1. This classifier 
show the lowest computational cost compared to the others.  

Patient 
Overall 

Accuracy 
Sensitivity Specificity Time (1 fold) Time (CV) 

P1 98.77% 98.67% 98.88% 2.66 min 0.44 hours 
P2 99.66% 99.73% 99.58% 2.54 min 0.42 hours 
P3 99.36% 99.77% 99.07% 2.13 min 0.35 hours 

Table 7: Classification results, CS1 and Random Forests 

The results achieved in the CS1 scenario shows that all the classification 
algorithms can obtain great classification results. The worst results in terms of 
overall accuracy is higher than 98% of success, and the values of sensitivity and 
specificity in this case hold higher too.  As far as computational cost is concerned, it 
can be seen that ANN and RF can overwhelm the classification task more efficiently.  

The graphical representation shown Figure 33 is a useful way to display 
multivariate data. It consists on a radial graph; where the edged represent a 
classifier and each point represent a classification result. From this representation 
it is possible to extract some information. Regarding to the classifiers, it can be seen 
that ANN obtain the most accurate results for all the evaluation metrics. Random 
Forests also provides accurate classification results, outperforming both SVM 
configurations. On the other hand, regarding to the results obtained for each patient, 
patient number 3 show better prediction than the others, specifically this patient 
show high sensitivity values for all the classifiers. The other patients show a similar 
trend, obtaining competitive predictions for all the classifiers. 
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(a)Overall Accuracy 

 
(b) Sensitivity 

 
(c) Specificity 

Figure 33: Graphical representation of results – CS1 
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4.2 Case Study 2 

This CS aims to introduce some inter-patient variability in the classification 
routine. This is done by merging all available data from all patients in a single 
dataset. The model evaluation has been also accomplished through 10-fold cross-
validation. The results achieved with all the classifiers for this case study are shown 
on Table 8. Although the discrimination rate in all supervised classifiers present 
good discrimination capabilities between normal and tumour tissue (higher than 
90% in terms of overall accuracy, sensitivity and specificity), the results have 
worsened compared to the ones obtained in CS1. Following the same trend as in CS1, 
ANN provides the best classification results. It can be also observed that the results 
achieved using SVM are the weakness ones. 

 

Classifier 
Overall 

Accuracy 
Sensitivity Specificity 

Time  
(1 fold) 

Time (CV) 

SVM Linear 94.46% 95.15% 93.66% 712.20 min 118.70 hours 
SVM RBF 92.78% 94.55% 90.83% 1168.40 min 194.73 hours 

RF 97.91% 98.06% 97.75% 12.42 min 2.07 hours 
ANN 98.20% 98.72% 97.61% 11.24 min 1.87 hours 

Table 8: Classification results, CS2 

Talking about computational cost, it has been heavily increased compared with 
the ones obtained in CS1. This is due to the high amount of data that compose the 
dataset (more than 800,000 samples). In this CS, the computational time required 
by SVM is much greater than the one required for both ANN and RF. The time spent 
by ANN and RF for training the classifier and evaluating its performance can be 
measured in a few hours, meanwhile the time required by both SVM variants must 
be measured in days. For these reasons, ANN and RF provide more competitive 
predictions with a significantly lower computational cost. 

A radial graph is used again to obtain a graphical representation of the results. In 
this case, due to the presence of a unique simulation, all the evaluation metrics are 
plotted simultaneously. Figure 34 indicates that the best classification results are 
reached when using ANN and RF. Again the worst classification results have been 
obtained with SVM and Gaussian kernel. It must be observed that the values of 
specificity and sensitivity are balanced, so the classifiers are capable to distinguish 
between both types of tissue with a similar accuracy. 
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Figure 34: Graphical representation of results – CS2 

4.3 Case Study 3 

This experiment setup reproduces a practical situation where a new patient 
arrives and the prediction of the disease is based on the information from the 
previous patients. In this scenario, the model evaluation is performed following a 
hold-out method, where the samples from previous patients are used as training set 
and data from the new patients is used to evaluate the model performance. Patient 
number 4 only has samples from tumoral tissue, so the measure of the specificity 
does not make sense because there is not possible to have any false positive neither 
true negative.  In this case the overall accuracy and the sensitivity are the same. 

4.3.1 Support Vector Machines 

Table 9 and Table 10 show the results obtained using SVM. It can be seen how the 
classification results are not as accurate as in the others case studies. Linear kernel 
shows poor classification results, specifically it is shown in the patient number 4. 
The most accurate results with this kernel is given for patient 1, achieving an 
81.85% of overall accuracy. Looking at the classification results obtained for the 
Gaussian kernel, it has been possible to accurately classify tissue from patient 
number 4, achieving a 94.50% of overall accuracy. 

 

Patient Overall Accuracy Sensitivity Specificity Time  
P1 81.85% 86.94% 77.57% 6.81 hours 
P2 64.64% 75.96% 59.66% 3.65 hours 
P3 68.92% 59.33% 83.87% 6.52 hours 
P4 10.74% 10.74% - 11.93 hours 

Table 9: Classification results, CS3 linear SVM 
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Patient Overall Accuracy Sensitivity Specificity Time  
P1 73.86% 79.19% 69.65% 821.35 min 
P2 61.19% 68.46% 57.51% 483.07 min 
P3 58.44% 50.58% 83.52% 817.09 min 
P4 94.50% 94.50% - 1164 min 

Table 10: Classification results, CS3 RBF SVM 

 

4.3.2 Artificial Neural Network 

The results obtained using Artificial Neural Networks, presented in Table 11, are 
not accurate at all. For patient 4 the predictions are really precise, achieving a 
99.20% of overall accuracy, but the results obtained for the other patients are not 
useful. Regarding the computational cost, it is more efficient compared with the two 
SVM variants. 

Patient Overall Accuracy Sensitivity Specificity Time  
P1 48.15% 50.03% 46.19% 9.70 min 
P2 47.26% 47.80% 46.99% 9.48 min 
P3 33.02% 15.23% 42.72% 10.47 min 
P4 99.20% 99.20%   - 12.95 min 

Table 11: Classification results, CS3 and Neural Networks 

4.3.3 Random Forests 

Table 12 shows the evaluation metrics obtained for Random Forests. The trend 
is similar to the ones achieved using Neural Networks: all the results are really 
inaccurate, excepting the ones reached for patient number 4, where an 88% of 
overall accuracy was obtained. 

Patient Overall Accuracy Sensitivity Specificity Time (1 fold) 
P1 47.75% 49.60% 46.13% 6.66 min 
P2 38.50% 39.53% 37.51% 6.16 min 
P3 41.29% 39.27% 47.62% 6.67 min 
P4 88.04% 88.40% - 9.26 min 

Table 12: Classification results, CS3 and Random Forests 

In Figure 35, a radial graph represents the classification results for this scenario. 
It can be observed that the most accurate results are obtained when classifying 
patient number 4. These results are above 88% overall accuracy using all classifiers 
except SVM with linear kernel. Regarding the other patients, the classification 
results are very inaccurate when ANN and RF are employed (worse than a random 
assign of classes). SVM provides better classification results compared to the others, 
and also show some promising results for patient 1. These results are not as accurate 
as the obtained in the others CS, but they show that it is possible to correctly classify 
data from other patient. These results are 88% and 73% of overall accuracy for the 
SVM linear and SVM RBF respectively.   
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(a)Overall Accuracy 

 
(b) Sensitivity 

 
(c) Specificity 

Figure 35: Graphical representation of results – CS3 
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Finally, the results of this CS3 are briefly compared. It can be easily seen that the 
classification accuracy has decreased compared to the achieved in the other case 
studies. It can be also observed that the sensitivity and specificity values are not 
balanced, as occurs in the others case studies. In this CS3 only the samples from 
patient number 4 have been classified accurately (except using SVM with linear 
kernel).  

4.4 Summary 

This chapter presents the classification results obtained in this research work. 
The performance of three different supervised classifiers have been evaluated over 
three different scenarios, where the inter-patient variability was or not taken into 
account. These results are promising in CS1 and CS2, showing that it is possible to 
distinguish between normal and tumour tissue attending only to the spectral 
signature. In CS3 the results are not as accurate, possibly due to the low number of 
patients involved in this study. 
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Chapter 5: Conclusions 

The main goal of this Master's Thesis, propose and validate several classification 
models and use data mining techniques in order to obtain an automatic diagnostic 
tool for medical hyperspectral imaging, have been successfully achieved. Also an 
exhaustive documentation about the medical hyperspectral images have been 
acquired, finding new ways to threat the same problem with different points of view 
(for example, following a strategy similar to the one followed by the Norwegian 
research group analysed in Chapter 2). 

As far as classification results is concerned, it has been shown in Chapter 4 that 
competitive results in the discrimination between normal and tumour tissue are 
obtained in CS1 and CS2 whatever classifier is employed. This trend does not keep 
in CS3, where only in certain specific situations (patient number 4 with Gaussian 
kernel SVM and with ANN) accurate predictions are obtained. The low number of 
patients involved in this study possibly causes the inaccurate results reached in CS3. 
Using only four patients, the classifier is built uniquely using the information from 
three patients. Moreover, due to the fact that patient number 4 only provides 
samples for tumour tissue; patients 1, 2 and 3 are trained using healthy tissue 
information from only two patients. For these reasons, it is possible that the 
classifiers have not enough information to build a model with high generalization, 
and the model is highly biased by the patients.  In future works the number of 
patients must be increased in order to avoid this fact. 

Regarding the supervised classifiers used in this study, in CS1 and CS2 the better 
classification results are obtained using ANN and RF. These algorithms have also 
shown the lower computational cost compared with SVM. In CS3 there is no 
tendency, some algorithm works correctly with certain patients. The ongoing work 
in this field can be based on introducing additional processing techniques, like 
feature selection and extraction. This has not been accomplished in this Master 
Thesis due to its temporal constraints and the high simulation time required for 
each simulation. 

It has been proven in the literature regarding hyperspectral image classification 
that combining both the spatial and spectral features extracted from hyperspectral 
data enhance the prediction accuracy. Specifically, in this context the inclusion of 
the spatial features can be advantageous, because the gold standard of cancer 
diagnoses is based on the morphological analysis of pathological slides. 
Nevertheless, the data employed in this study do not have enough spatial resolution 
to exploit the morphological information of data.  

Summing up, although more efforts must be put in developing an automatic 
diagnostic tool for pathological slides, hyperspectral imaging has been presented as 
a suitable tool for handling this problem. While a more exhaustive study must be 
carried out, including more patients, hyperspectral images with higher spectral 
resolution and more sophisticated classification schemes, this study presents 
promising results in discriminating between normal and tumour tissue in 
pathological slides. This kind of tools can help pathologist to analyse the slides 
without spending a long time for the examination of each sample.  
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ABSTRACT 

Hyperspectral imaging is an emerging technology for 

medical diagnosis. Some previous studies have used this 

type of images to detect cancer diseases. In this research 

work, a multidisciplinary team conformed by pathologists 

and engineers has created a diagnosed hyperspectral 

database of in-vitro human brain tissues. In order to capture 

the hyperspectral information from histological slides, an 

acquisition system based on a microscope coupled with a 

hyperspectral camera has been developed. Preliminary 

results of applying two different supervised classification 

algorithms (Support Vector Machines and Artificial Neural 

Networks) to the hyperspectral database show that an 

automatic discrimination between healthy and tumour brain 

tissues from in-vitro samples is possible using exclusively 

their spectral information. The sensitivity and the specificity 

are over 92% in all the cases.  

Index Terms— Brain cancer detection, Hyperspectral 

imaging, Data mining, Support vector machine, Artificial 

neural network  

1. INTRODUCTION

Hyperspectral Imaging (HSI) is a technology that 

combines both spectroscopy and digital imaging, measuring 

hundreds of narrow bands from the electromagnetic 

spectrum. Each material has its own interaction with 

radiation, which can be measured either by using the 

reflectance or the absorbance values. The response to 

different wavelengths for a single material is called spectral 

signature, which allows the discrimination between different 

types of materials. The data structure used by HSI systems 

is called hypercube, and it stores all the spatial and spectral 

information enclosed in a scene. There are a few types of 

hyperspectral cameras, depending on the way that they 

capture the hypercubes. In this research work, a pushbroom 

camera was used. This type of camera is based in an optical 

element called spectrograph, used for splitting the light into 

narrow wavelength bands. Each hyperspectral image taken 

by a pushbroom camera involves the capture of a two 

dimensional image which contains all the spectral 

information, but it only captures one-dimensional spatial 

information (a single line) from a surface. In order to 

generate a full hypercube, it is necessary to incorporate a 

linear-scan system, where either the camera or the sample to 

be captured must be moved synchronously. 

Although HSI has been widely used in Remote Sensing, 

it is an emerging technology for clinical diagnosis. Some 

studies have proven that interaction between 

electromagnetic radiation and tissue carries useful 

information for diagnosis proposals [1]. A variety of studies 

shows that HSI is a helpful tool in the diagnosis of several 

cancer diseases. Some studies about prostate [2], ovaries [3], 

breast [4], and tongue [5] cancer detection using HSI have 

been recently published. 

Hyperspectral imaging involves managing a large 

amount of data, so in order to extract relevant information 

from the hypercubes, a data mining process is required. In 

the studies previously reviewed, some supervised 

classification algorithms have been used. Support Vector 

Machines (SVM) [6] is a kernel-based supervised 

classification technique which has been widely used in the 

classification of medical hyperspectral images [1]. Artificial 

Neural Network (ANN) is another machine learning 

approach also used in medical applications, being multilayer 

perceptron (MLP) the most popular type of Neural Network 

[7]. In this paper both approaches will research if an 

automatic discrimination between tumour and healthy brain 

tissues can be performed using hyperspectral imaging.  

2. METHODS

2.1. Description of biological samples 

The biological samples used in this research work 

consist in biopsies of human brain tissue resected during 

surgery. A sample of the tumour’s tissue is required for the 

pathologic diagnosis during or after the surgery. A biopsy is 

the removal of a small amount of tissue for the examination 

under a microscope and is the conclusive way that a brain 



tumour can be trustworthy diagnosed. The sample removed 

during the biopsy is analysed by a pathologist. A biopsy can 

be done as part of a surgery to remove the entire tumour or 

as a separate procedure if surgical removal of the tumour is 

not possible because of its location or patient’s health. This 

biopsy has followed a histological processing, whereby 

tissue specimens are prepared for sectioning, staining and 

diagnosis. Once biopsy has been diagnosed, tissue is sorted 

according to the Wold Health Organization (WHO) 

classification of tumours of the nervous system. 

 In this study, 4 different patients were used, and 13 

diagnosed pathology slides were available. Pathology slides 

were provided by the Anatomy Pathology department of 

Doctor Negrín Hospital, at Las Palmas of Gran Canaria. In 

order to facilitate the labelling process of the hyperspectral 

data, once pathologists had a diagnosis for a certain tissue, 

they marked the regions of interest in the slide with a 

coloured pen. Tumour tissues were marked with red colour, 

and healthy tissues were marked using blue colour (Fig. 1). 

      

 (a)             (b) 

Fig. 1. (a) One of the diagnosed histological slides used in this study (b) 
Location of the hypercubes in a histological slide 

2.2. Instrumentation 

In order to register hyperspectral images from pathology 

slides, a capture system consisting on a HSI camera coupled 

with a microscope has been developed (Fig. 2.a). The 

hyperspectral camera used was the Specim ImSpector VNIR 

V10-E, which works in the VNIR spectral range (from 400 

nm to 1000 nm) with a spectral resolution of 2.8 nm. It is a 

pushbroom camera, so to capture a whole hypercube, either 

the camera or the sample must be moved synchronously 

with the shoot of the camera. The Microscope used was the 

Olympus BH2-MJLT. With this microscope it is possible to 

do observations by transmittance or reflectance of light in 

tissue, with magnifications of 5x, 10x, 20x, 50x and 100x. It 

has its own source of light which consists in a power-

adjustable halogen bulb (Philips CAPSUline PRO 13102). 

This light has been tested to emit in all the frequency range 

previously mentioned.  

So as to obtain a hypercube from the pathology slides, a 

linear-movement mechanism has been employed. This 

mechanism is based on a Sony PlayStation 3 (PS3) Blue-

Ray reader driver, with a movement resolution of 9 μm. 

This mechanism is synchronized with the capture of each 

pushbroom line of the camera. A full custom C++ based 

software has been developed to control both the camera and 

the mechanism movement. 

In order to attach the linear-movement mechanism into 

the microscope, a wooden flat platform has been built and 

replaced by the original plate of the microscope (Fig. 2.b). 

The slides are coupled to the PS3 driver using permanent 

magnets (Fig. 2.c). A Graphical User Interface (GUI) has 

been developed to provide users an easy-to-use interface 

which encapsulates the complexity of the capture system in 

a single button. 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. (a) Acquision system based on a microscope coupled with a 

hyperspectral camera (b) Original microscope plate (c) Customized 

microscope plate with the linear-movement mechanism attached. 

The following conclusions were reached from the test of 

the acquisition system developed: 

1) When coupling the microscope with the HSI camera, 

the pushbroom line captured width is 4.4 μm using 5x 

magnification and 2.2 μm with 10x magnification. Due to 

the resolution of the stepper motor, which is of 9 μm, the 

collected hypercubes have some missing spatial information 

between each pushbroom lines captured. 

2) It has been found that the microscope heavily filters 

the wavelengths above 800 nm. 



3) Hypercubes have only been captured using the 

transmittance observation mode and only with 5x and 10x 

magnifications. The sensitivity of the HSI camera sensor 

does not allow making observations neither with reflectance 

observation technique nor using the other lenses available. 

This is because the power of the light source used is not 

bright enough to make measures in the reflection mode or 

with higher magnification lenses. 

2.3. Database creation 

Using the HSI capture system described in section 3, the 

procedure of capturing hypercubes has been quite automatic. 

Firstly, the focus should be done through the microscope 

binocular, ensuring that the HSI pushbroom image is also 

focused. Then, the capture starts when the capture button is 

pressed in the capturing GUI previously described. In order 

to keep a correspondence between the pathology slides and 

the captured hypercubes, a labelling of the regions of 

interest is performed. Each region of interest of the slides is 

enumerated, and an identification number is assigned to 

each hypercube (Fig. 1.b).  

The goal of this study was collecting a labelled spectral 

dataset of pathological samples in order to figure out if HSI 

could be used as a helpful diagnosis tool for this type of 

diseases. The chromatic dye employed in this work equally 

stains both healthy and tumour tissues. Diagnosis of 

neoplasia is accomplished accordingly to the morphological 

comparison between different types of tissues, cells and 

stroma. The use of visual colour by itself does not provide 

enough information for pathological diagnosis. To tag each 

spectra as healthy or tumour according to the diagnostic 

given by the pathologist, a new GUI was developed. In this 

new GUI, a synthetic RGB image (Fig. 3.a) is shown, and 

the user must crop a region of interest that only contains 

diagnosed tissue. Once a region of the image has been 

selected, a dialog window is shown and the user must 

introduce if the region of interest is healthy (marked as blue 

by pathologist) or tumour (marked as red). Subsequently, 

the spectra of the selected pixels are extracted from the 

hypercube and the labels are added to the pathological 

hyperspectral dataset. 

To provide the user with a synthetic RGB image, 

wavelengths near red (650 nm), green (550 nm) and blue 

(420 nm) are averaged in order to generate the red, green 

and blue channels of a normal RGB image. Additionally, the 

images are processed to discriminate between useful pixels 

(tissue) and background pixels (microscope light). A 

binarization of the RGB image is done in order to achieve 

the identification of tissue pixels in the hypercube (Fig. 3.b). 

The threshold that better separates the background from the 

tissue was determined by means of several experiments.  

A dataset of 83 hypercubes has been obtained for each 

optical magnification (5x and 10x) after capturing all the 

samples (166 in total). By extracting and labelling the 

spectral data from these hypercubes, a dataset of 

approximately 12 million spectra was generated (only for 5x 

magnification), where 15% of the spectra belongs to healthy 

tissue. Fig. 4 shows the mean of healthy tissue (blue) and 

tumour tissue (red) hyperspectral signatures.  

    

             (a)    (b) 

Fig. 3. (a) Synthetic RGB image extracted from a hypercube (b) Separated 

tissue and background using binarization. 

 

Fig. 4. Mean values of hyperspectral signatures of the healthy tissue and 

tumour tissue, ranging from 400 nm to 1000 nm.  

3. EXPERIMENTAL RESULTS 

The created database has been classified using a machine 

learning chain in order to determine if it is possible to 

distinguish between healthy tissue and tumour tissue using 

only its spectral information. Table I shows the preliminary 

results of the classification using SVM and ANN. In order 

to test both classification models, a randomly-selected set of 

spectra was taken from the database. Then, this dataset has 

been split into training data and test data in order to 

perform hold-out validation. These preliminary results were 

obtained using 40,000 samples, where 25% were training 

samples and 75% test samples.  

After testing several configurations for the selected 

classification algorithms, some conclusions have been 

reached. For SVM, it has been proven that a linear kernel 

provides a performance as accurate as other more complex 



kernels (like polynomial or Gaussian) with a lower 

computational cost. In the same way, several neural 

networks architectures varying the number of hidden layers, 

the number of neurons inside this layers and the activation 

function selected for each layer have been tested. The 

experimental results shown that the best performance is 

obtained using a multilayer neural network with a single 

hidden layer with 33 neurons, using a logistic activation 

function for this layer. A hyperbolic tangent sigmoid 

activation function has been selected for the output layer.   

In this work, the following standard metrics have been 

used in order to evaluate the classification results: 

 Sensitivity: relates to the tests ability to identify a 

condition correctly. It is obtained as the number of true 

positives divided by the total number of true positives 

and false negatives in population (see equation 1). 

 Specificity: relates to the tests ability to exclude a 

condition correctly. It is obtained as the number of true 

negatives divided by the total number of true negatives 

and false positives in population (see equation 2). 

The results presented in Table I reveal that the 

specificity and the sensitivity of distinguishing between 

tumour tissue and healthy tissue is over 92 % using any of 

the proposed classifiers. The coherence between sensitivity 

and specificity means that both classes (tumour and healthy) 

are both correctly classified. These results were obtained 

without the use of exhaustive pre-processing chain before 

classifying, which probably would increase the quality of 

the classifiers performance. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) = 100 ∙
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1) 

  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (%) = 100 ∙
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(2) 

TABLE I PRELIMINARY CLASSIFICATION RESULT USING SVM AND ANN 

Classification Algorithm Specificity Sensitivity 

SVM 92.61 % 94.44 % 

ANN 92.44 % 92.77 % 

4. CONCLUSIONS 

It has been shown that the developed acquisition system 

is capable to register hyperspectral data contained in 

biological preserved slides. This system has been used to 

generate a database of human in-vitro brain tissues labelled 

as healthy or tumour tissues. Preliminary results show that it 

is possible to discriminate between healthy and tumour 

tissues by exclusively processing the spectral information of 

the tissue.  

The on-going work in this research is to increase the 

database to include new patients. Another task to be done is 

to define a new set of more-detailed labels according to a 

more complex pathology diagnosis (for example, defining 

tumour types depending on its grade). This kind of studies 

could show the capability of HIS in automatic detection of 

cancer diseases from pathological slides. 

As far as the acquisition system is concerned, the capture 

system could be improved. In section 3, the weaknesses of 

the acquisition system were outlined: i) there is some 

missing spatial information due to the linear-movement 

mechanism resolution; and ii) the light source is not 

powerful enough to allow capturing hyperspectral 

information using reflectance observation methods. Using a 

mechanism with a higher resolution, a whole hypercube 

from pathology slides (with no gaps between the pushbroom 

lines) could be obtained. Furthermore, a higher power light 

source could allow making tissue registrations with all the 

available lenses and also in reflectance observation mode. 

Finally, the data mining process performed must be 

improved in order to extract as much information as 

possible from the available spectral database. This task 

involves pre-processing of data, dimensional reduction, 

feature selection and testing new supervised classification 

algorithms. 
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