Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/77412
Título: | iDeLog: Iterative Dual Spatial and Kinematic Extraction of Sigma-Lognormal Parameters | Autores/as: | Ferrer Ballester, Miguel Ángel Diaz Cabrera, Moises Carmona Duarte, María Cristina Plamondon, Réjean |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Biometrics Kinematic Theory of rapid movements Motor equivalent model Sigma-lognormal model, et al. |
Fecha de publicación: | 2020 | Publicación seriada: | IEEE Transactions on Pattern Analysis and Machine Intelligence | Resumen: | The Kinematic Theory of rapid movements and its associated Sigma-Lognormal model have been extensively used in a large variety of applications. While the physical and biological meaning of the model have been widely tested and validated for rapid movements, some shortcomings have been detected when it is used with continuous long and complex movements. To alleviate such drawbacks, and inspired by the motor equivalence theory and a conceivable visual feedback, this paper proposes a novel framework to extract the Sigma-Lognormal parameters, namely iDeLog. Specifically, iDeLog consists of two steps. The first one, influenced by the motor equivalence model, separately derives an initial action plan defined by a set of virtual points and angles from the trajectory and a sequence of lognormals from the velocity. In the second step, based on a hypothetical visual feedback compatible with an open-loop motor control, the virtual target points of the action plan are iteratively moved to improve the matching between the observed and reconstructed trajectory and velocity. During experiments conducted with handwritten signatures, iDeLog obtained promising results as compared to the previous development of the Sigma-Lognormal. | URI: | http://hdl.handle.net/10553/77412 | ISSN: | 0162-8828 | DOI: | 10.1109/TPAMI.2018.2879312 | Fuente: | IEEE Transactions on Pattern Analysis and Machine Intelligence [ISSN 0162-8828], v. 42 (1), p. 114-125 |
Colección: | Artículos |
Citas SCOPUSTM
35
actualizado el 10-nov-2024
Citas de WEB OF SCIENCETM
Citations
24
actualizado el 10-nov-2024
Visitas
193
actualizado el 24-ago-2024
Descargas
368
actualizado el 24-ago-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.