
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 

 

iDeLog: Iterative Dual Spatial and Kinematic 
Extraction of Sigma-Lognormal Parameters  

Miguel A. Ferrer, Moises Diaz, Cristina Carmona-Duarte, Réjean Plamondon 

Abstract—The Kinematic Theory of rapid movements and its associated Sigma-Lognormal model have been extensively used 
in a large variety of applications. While the physical and biological meaning of the model have been widely tested and validated 
for rapid movements, some shortcomings have been detected when it is used with continuous long and complex movements. To 
alleviate such drawbacks, and inspired by the motor equivalence theory and a conceivable visual feedback, this paper proposes 
a novel framework to extract the Sigma-Lognormal parameters, namely iDeLog. Specifically, iDeLog consists of two steps. The 
first one, influenced by the motor equivalence model, separately derives an initial action plan defined by a set of virtual points and 
angles from the trajectory and a sequence of lognormals from the velocity. In the second step, based on a hypothetical visual 
feedback compatible with an open-loop motor control, the virtual target points of the action plan are iteratively moved to improve 
the matching between the observed and reconstructed trajectory and velocity. During experiments conducted with handwritten 
signatures, iDeLog obtained promising results as compared to the previous development of the Sigma-Lognormal.  

Index Terms—Biometrics, Kinematic theory of rapid movements, Motor equivalent model, Sigma-Lognormal model, Signature  

——————————      —————————— 

1 INTRODUCTION

uman movement modelling is of great interest for de-
signing intelligent systems inspired by the under-

standing of fine motor control.  
The velocity profile of human movement in general, and 

handwriting in particular, has been the subject of many 
different theories. Specifically, [1] discusses theories which 
rely on neural networks, behavioral models, coupled oscil-
lator models, differential equation models, kinematic mod-
els, models exploiting minimization principles, etc. More-
over, many models exploit the properties of various math-
ematical functions, such as exponentials, Gaussians, beta 
functions, splines, etc., to reproduce human movements. 

Among the models which provide analytical represen-
tations, the Kinematic theory of rapid human movements  
and its Delta and Sigma–Lognormal models have been ex-
tensively used to explain most of the basic phenomena re-
ported in classical studies on human motor control of rapid 
and automated movements [2][3][4][5]. 

The Sigma-Lognormal model is based on the hypothesis 
that the velocity of a neuromuscular system can be mod-
elled by a vector summation of a certain number of lognor-
mal functions, each of them defined by six parameters [6].  

Over the last 10 years of uninterrupted use, the model 

has been challenged by many researchers, applying it to a 
wide variety of practical applications such as the develop-
ment of Automatic Signature Verification systems [7], the 
generation of duplicated signatures to improve training [8] 
or the improvement of forgery detection [9]. It has also 
been used to synthesize Western [10][11][12][13] and In-
dian [14] signatures. Beyond the handwritten signature 
field, this model has been successfully applied to the fol-
lowing: the study and understanding of the evolution and 
acquisition of handwriting skills [15], the development of 
tools to help children learn handwriting [16], neuromuscu-
lar health care [17], the examination of biomedical systems 
for detecting fine motor control problems associated with 
brain strokes [18] and Parkinson’s disease [19], as well as 
to the characterization of the cranio-caudal signature of a 
turn [20]. Recently, the Kinematic theory of rapid move-
ments has been applied to many different areas, such as 
handwriting generation [21], CAPTCHA [22], graffiti de-
sign [23], mouse movement analysis [24], gesture genera-
tion [25]  and the study of articulation in voice processing 
[26], among others. 

Most of the above research calculate the Sigma-Lognor-
mal parameters through the Robust XZERO algorithm im-
plemented by the ScriptStudio application, which was pro-
posed in 2007 [27][6]. 

1.1 Our proposal 
Without questioning the efficacy of Sigma-Lognormal 
model, which works accurately with automated and rapid 
movements, some shortcomings been seen when extract-
ing the parameters of continuous long and complex move-
ments. Incidentally, the main drawback observed has been 
a certain degree of drift in the trajectory reconstruction. In 
previous works, these issues are partially addressed by 
cutting the long pieces of handwriting into smaller pieces 
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and reconstructing each of them independently to ensure 
better reconstruction rates [7][8] [10][11][28]. Following a 
new avenue, this paper aimed to establish a new frame-
work to extract the Sigma-Lognormal parameters relying 
on the motor equivalence theory and a conceivable visual 
feedback in long and complex movements.  

It should be noted that it is not the goal of this work to 
confirm or deny the validity of the motor equivalence the-
ory or to look into the subtle integration of a possible visual 
feedback in automated human movements. Rather, our re-
search aims to provide new insights into a more robust pa-
rameter extraction of the Sigma-Lognormal model from a 
novel point of view in the hopes of advancing the frontiers 
of the Sigma-Lognormal model inspired by such hypothe-
ses. 

The motor equivalence model, also known as the De-
grees of Freedom (DoF) problem [29][30], suggests that the 
brain stores the movements aimed at performing a single 
task in two steps. The first step is effector-independent, and 
stores the movement in an abstract form as a spatial se-
quence of points representing the action plan. The second 
step is effector-dependent, and consists in a sequence of mo-
tor commands directed at obtaining particular muscular 
contractions and articulatory movements in order to exe-
cute a given action plan [31]. 

Additionally, in a rapid and short movement, it is con-
ceivable that the planned and executed movements are 
matched. However, in long movements, there will be a 
likely drift between the planed movement and its execu-
tion, which would require some corrections. [32] looks at 
the interaction between visual feedback and automated 
handwriting movements, and asserts that the visual feed-
back does not abort a movement when a drift exists in the 
trajectory. Rather, a new stroke is added to correct the tra-
jectory towards the new target. Thus, the visual feedback 
does not slow down open-loop movements to allow con-
trol of the motor output in a closed-loop mode. 

The motor equivalence hypothesis, which divides hu-
man physical action into the cognitive plan and motor con-
trol, can be integrated into the Sigma-Lognormal model by 
working out its parameter on the basis of a dual spatial and 
kinematic calculation. As such, on the one hand, the action 
plan defined by the virtual points and its angle would be 
calculated from the observed trajectory. On the other hand, 
the remaining parameters would be deduced from the ob-
served velocity.  

The idea that visual feedback can modify a future stroke 
when the trajectory drifts without slowing down the open-
loop motor control is useful for correcting the drift be-
tween the reconstructed and observed movements. We 
consider such a hypothetical visual feedback in the param-
eter extraction procedure of the Sigma-Lognormal model, 
which relies on well-learned automatic human movements 
governed by open-loop motor control without a significant 
visual feedback influence [33]; to that end, we propose an 
optimization stage of the initial set of parameters extracted 
by moving the virtual target points. As such, there is a sig-
nificant improvement in the trajectory reconstruction, 
which is at the expense of a slight degradation of the veloc-
ity reconstruction.  

On the bases of the above, the procedure for working out 
the Sigma-Lognormal parameters is completely reformu-
lated. The novel procedure, which we call iDeLog in this 
work, calculates the 8-connected trajectory and speed pro-
file of a given long and complex movement. Influenced by 
the motor equivalence model, the action plan, the total 
number of virtual target points, and the angles of their cir-
cular trajectories are dually derived from the trajectory, 
and the velocity decomposed as a sum of weighed lognor-
mals. At this point, an initial reconstruction is obtained. 
Applying visual feedback principles, the reconstructed 
movement is iteratively optimized by moving the virtual 
target points with the ensuing changes of the angles and 
lognormal parameters. A block diagram of the procedure 
is shown in Figure 1.  

  
Fig. 1. Block diagram of iDeLog framework to calculate the Sigma-Lognormal parameters of an on-line signature. Solid blue lines represent
observed movement, while dotted red lines represent reconstructed movement. 
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The remainder of the paper is organized as follows: Sec-
tion II briefly reviews the Sigma-Lognormal model and pa-
rameter extraction. Section III is devoted to iDeLog, while 
its evaluation and the related discussion are covered in 
Section IV. Section V concludes the article.   

2 SIGMA-LOGNORMAL MODEL: A BRIEF REVIEW 
2.1 The Sigma-Lognormal Model 
The Kinematic Theory of rapid movements [2], from which 
the Sigma-Lognormal model was developed [6], considers 
that complex human movements consist of overlapping 
strokes. Each stroke has a lognormal-shaped velocity pro-
file 𝑣௝ሺ𝑡ሻ defined as: 

𝑣௝ ቀ𝑡; 𝑡଴௝, 𝜇୨, 𝜎୨
ଶቁ ൌ 𝐷௝Λ ቀt; 𝑡଴௝, 𝜇௝, 𝜎௝

ଶቁ ൌ

ൌ
𝐷௝

𝜎௝√2𝜋ሺ𝑡 െ 𝑡଴௝ሻ
exp ቌെ

ቂln ቀ𝑡 െ 𝑡଴௝ቁ െ 𝜇௝ቃ
ଶ

2𝜎௝
ଶ ቍ 

(1)

where 𝑡 is the time, 𝑡଴௝ the time of stroke occurrence, 𝐷௝ the 
amplitude of the stroke, 𝜇௝ the stroke time delay and 𝜎௝ the 
stroke response time, both on a logarithmic time scale. 

The overlapping of these lognormals can produce a 
complex trajectory from a hidden trajectory action plan. 
Such an action plan consists of a sequence of virtual target 
points linked together by circular arcs. Each arc is pro-
duced as a response of the motor system to a set of rhyth-
mic commands from the cerebellum. The overlap in time 
of these movements results in:  

𝑣⃗ሺtሻ ൌ ൤
𝑣௫ሺ𝑡ሻ
𝑣௬ሺ𝑡ሻ൨ ൌ ෍ 𝐷௝ ൤

cosሺ𝜙௝ሺ𝑡ሻሻ
sinሺ𝜙௝ሺ𝑡ሻሻ൨ 𝐷௝Λ ቀt; 𝑡଴௝, 𝜇௝, 𝜎௝

ଶቁ

ே

௝ୀଵ

 (2)

where 𝑁 denotes the number of lognormals, or strokes, and 
𝜙௝ሺ𝑡ሻ the angular position. 

𝜙௝ሺ𝑡ሻ ൌ 𝜃௦௝ ൅
𝜃௘௝ െ 𝜃௦௝

2
቎1 ൅ erf ቌ

𝑙𝑛 ቀ𝑡 െ 𝑡଴௝ቁ െ 𝜇௝

𝜎௝√2
ቍ቏ (3)

where 𝜃௘௝ and 𝜃௦௝ are respectively the starting angle and 
the ending angle of the arc that links the two virtual target 
points corresponding to the 𝑗௧௛ stroke. Note that this for-
mula describes the sweep from 𝜃௦௝ to 𝜃௘௝  in a lognormal 
timing.  Finally, the trajectory is calculated as: 

𝑠ሺtሻ ൌ ෍
𝐷௝

𝜃௘௝ െ 𝜃௦௝

቎
sin ቀ𝜙௝ሺ𝑡ሻቁ െ sin ቀ𝜃௦௝ቁ

െcos ቀ𝜙௝ሺ𝑡ሻቁ ൅ cos ቀ𝜃௦௝ቁ
቏

ே

௝ୀଵ

  (4)

This formula converts angles into circular arcs and over-
laps them. Specifically, the 𝑗௧௛ term of the summation rep-
resents the arc of the circumference that links the virtual 
target points 𝑡𝑝௝ିଵ and 𝑡𝑝௝. The radius of this circumfer-

ence is 𝐷௝/ ቀ𝜃௘௝ െ 𝜃௦௝ቁ, and 𝐷௝ coincides with the arc length. 
In this case, the virtual target points are defined by: 

𝑡𝑝௝ ൌ 𝑡𝑝௝ିଵ ൅
𝐷௝

𝜃௘௝ െ 𝜃௦௝

ቈ
sinሺ𝜙௝ሺ𝑇ሻሻ െ sin ሺ𝜃௦௝ሻ

െcosሺ𝜙௝ሺ𝑇ሻሻ ൅ cosሺ𝜃௦௝ሻ
቉  (5)

 
where  𝑇 is the duration of the signature. 

2.2 Stroke Extraction 
The procedure proposed in [27][6] starts by calculating 

the magnitude of the velocity profile. To enhance the qual-
ity of the observed velocity signal, it is re-sampled at 200 
Hz through cubic splines, and smoothed by a Chebyshev 
filter [6][28]. 

 
The strokes are extracted according to the following it-

erative procedure: 
1. The strokes are firstly identified in the velocity magni-

tude profile according to the lobes. In short, a lognor-
mal is defined by its maximum 𝑝ଷ and the minimum 
of the velocity lobes 𝑝ଶ and 𝑝ସ. Figure 2 exemplifies 
this step for the third lognormal.  

2. The values of 𝑡଴௝ , 𝜇௝ and 𝜎௝ are obtained from 𝑝ଶ, 𝑝ଷ 
and 𝑝ସ. Because any velocity lobe can be approached 
similarly by many lognormals, as it is shown in Figure 
2, if the values of 𝜇௝ and 𝜎௝ are out of the expected 
range, the values  𝑝ଶ and 𝑝ସ are recalculated. Noise can 
generate false positive strokes, and therefore, if the 
area and the maximum of the lognormal are lower 
than a specific threshold, the lognormal is discarded.  

3. Once a stroke is identified, its velocity is reconstructed 
and removed from the observed velocity profile. This 
subtraction allows to uncover potential strokes whose 
local maxima are hidden by a faster lognormal neigh-
bor. 

4. The similarity between the preprocessed observed ve-
locity 𝑣௢ሺ𝑡ሻ and the reconstructed velocity profile 𝑣௥ሺ𝑡ሻ 
is calculated by means of the signal-to-noise ratio, de-
fined as:  

𝑆𝑁𝑅௩ ൌ 10log ൭
׬ 𝑣௢ሺ𝑡ሻଶ்

௧ୀ଴ 𝑑𝑡

׬ ሺ𝑣଴ሺ𝑡ሻ െ 𝑣௥ሺ𝑡ሻሻଶ𝑑𝑡
்

௧ୀ଴

൱  (6) 

5. The procedure then returns to point 1 and, considering 
the subtracted velocity as the input velocity, the pro-
cess is repeated, until the 𝑆𝑁𝑅௩ is larger than a given 
threshold or the current number of strokes is larger 
than a given maximum, or there are no sets of 𝑝ଶ, 𝑝ଷ 
and 𝑝ସ points left. 

2.3 Stroke Parameter Estimation 
The Robust XZERO algorithm [34] is used to estimate the 
lognormal parameters that describe the velocity profile of 
each stroke. Let 𝑠௝ be a stroke and 𝑝ଶ, 𝑝ଷ and 𝑝ସ its charac-
teristic points, which occur at times ሼ𝑡ఈሽఈୀଶ

ସ  and  

 
Fig. 2.  Four lobes of an observed velocity profile with the points 𝑝ଶ, 

𝑝ଷ and  𝑝ସ used to calculate the lognormal of the third lobe. Red cir-

cles: maximum and minimum from the observed velocity profile. Dot-

ted line: different lognormals approaching the third velocity lobe cal-

culated from different 𝑡௢. All the lognormals are so similar that the 

figure cannot tell them apart. 
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ሼ𝑣௢ሺ𝑡ఈሻሽఈୀଶ
ସ , their corresponding velocity values. The 

lognormal parameters 𝜏௝, 𝜇௝, 𝜎௝ and 𝐷௝ that fit ሼ𝑣௢ሺ𝑡ఈሻሽఈୀଶ
ସ  

can be derived using different two-element combinations 
of the lognormal characteristic points such as: 

𝜎ଶ ൌ

⎩
⎪⎪
⎨

⎪⎪
⎧െ2 െ 2log൫𝑟ఈఉ൯ െ

1
2logሺ𝑟ఈఉሻ

𝑖𝑓 𝛼 ൌ 2, 𝛽 ൌ 3

െ2 ൅ 2ට1 ൅ logଶሺ𝑟ఈఉሻ 𝑖𝑓 𝛼 ൌ 2, 𝛽 ൌ 4

െ2 െ 2logሺ𝑟ఉఈሻ െ
1

2logሺ𝑟ఉఈሻ
𝑖𝑓 𝛼 ൌ 3, 𝛽 ൌ 4

  (7) 

where log is the natural logarithm and 𝑟ఈఉ ൌ ‖𝑣௢ሬሬሬ⃗ ሺ𝑡ఈሻ‖/
ฮ𝑣௢ሬሬሬ⃗ ሺ𝑡ఉሻฮ.  

𝜇 ൌ log ൬
𝑡ఈ െ 𝑡ఉ

𝑒ି௔ഀ െ 𝑒ି௔ഁ
൰  (8) 

𝑡଴ ൌ 𝑡ఈ െ 𝑒ఓି௔ഀ   (9) 

𝐷 ൌ ‖𝑣௢ሬሬሬ⃗ ሺ𝑡ఈሻ‖ 𝜎√2𝜋exp ቆ𝜇 ൅
𝑎ఈ

ଶ

2𝜎ଶቇ െ 𝑎ఈ   (10) 

where 𝛼, 𝛽 ∈ ሼ2,3,4ሽ, 𝛼 ൏ 𝛽 and 

𝑎௜ ൌ

⎩
⎪
⎪
⎨

⎪
⎪
⎧3

2
𝜎ଶ ൅ 𝜎ඨ

𝜎ଶ

4
൅ 1 𝑖𝑓 𝑖 ൌ 2

𝜎ଶ                            𝑖𝑓 𝑖 ൌ 3

3
2

𝜎ଶ െ 𝜎ඨ
𝜎ଶ

4
൅ 1 𝑖𝑓 𝑖 ൌ 4

  (11) 

The parameters are computed using all possible combina-
tions. The set of parameters which minimizes the least-
square error is kept as the solution. 

2.4 Angle Estimation 
The XZERO calculates the start 𝜃௦ and end 𝜃௘ angles that 
link two virtual target points as follows: 

𝜃௦ ൌ 𝜙ሺ𝑡ଷሻ െ Δ𝜙ሺ𝑑ሺ𝑡ଷሻ െ 𝑑ሺ𝑡ଵሻሻ  (12) 
𝜃௘ ൌ 𝜙ሺ𝑡ଷሻ െ Δ𝜙ሺ𝑑ሺ𝑡ହሻ െ 𝑑ሺ𝑡ଷሻሻ  (13) 

where 

Δ𝜙 ൌ
𝜙ሺ𝑡ସሻ െ 𝜙ሺ𝑡ଶሻ

𝑑ሺ𝑡ସሻ െ 𝑑ሺ𝑡ଶሻ
  (14) 

𝑑ሺ𝑡௜ሻ ൌ ൞

0                                             𝑖𝑓 𝑖 ൌ 1
𝐷
2

൤1 ൅ 𝑒𝑟𝑓 ൬െ𝑎௜
𝜎√2ൗ ൰൨  𝑖𝑓 𝑖 ൌ 2,3,4

𝐷                                             𝑖𝑓 𝑖 ൌ 5

  (15) 

3 IDELOG: NOVEL SIGMA-LOGNORMAL 

EXTRACTOR 
The Robust XZERO is a velocity-based procedure, which is 
prone to spatial deviations as the observed movement gets 
longer. This is due to the fact that small deviations in the 
velocity estimation are propagated over the entire move-
ment when integrating the velocity to obtain the trajectory, 
thus resulting in an increased spatial deviation [28].  

To alleviate this drawback, we rely on the motor equiv-
alence model and a conceivable visual feedback paradigm. 
At a first step, a procedure to separately calculate the spa-
tial and kinematics Sigma-Lognormal parameters is de-
vised from the motor equivalence model hypothesis. Thus, 
the deviations of the modeled velocity are compensated by 

the spatial parameters, avoiding trajectory drift. At a sec-
ond step, from the visual feedback compatible with the 
open-loop motor control hypothesis, the spatial parame-
ters of the Sigma-Lognormal model are optimized to im-
prove the fitting between the observed and reconstructed 
movements. Thus, a dual trajectory and velocity optimiza-
tion are carried out. 

This section describes these new procedures based on 
the above underlying ideas. Specifically, we describe the 
stroke segmentation, the extraction of the spatial and kine-
matic Sigma-Lognormal parameters and their posterior 
optimization. We call this new framework ‘iDeLog’, which 
stands for iterative Decomposition in Lognormals. The mathe-
matical notations used are presented in Table 1.   

3.1 Stroke Segmentation 
The strokes are estimated from the magnitude of the veloc-
ity. Contrary to [27][6],  iDeLog does not need to resample 
and smooth the input signal. However, for the sake of com-
parison with [27][6], an option to smooth the input signal 
has been added to iDeLog. 

Once the velocity magnitude is, the strokes are identi-
fied as the velocity peaks between velocity minima. Specif-

ically, let the time of the velocity minima be ቄ𝑡௠௜௡௝ቅ
௝ୀ଴

ே
, 

where 𝑁 is the number of strokes, 𝑡௠௜௡଴ ൌ 0, and 𝑡௠௜௡ே ൌ 𝑇 
the duration of the observed rapid movement, as can be 
seen in Figure 2. In this case, the velocity peak which cor-
responds to stroke 𝑗 is defined as: 

𝑣௢௝
ሺ𝑡ሻ ൌ ൜

𝑣௢ሺ𝑡ሻ 𝑡௠௜௡௝ିଵ ൑ 𝑡 ൑ 𝑡௠௜௡௝

0 otherwise,
, 1 ൏ 𝑗 ൏ 𝑁 (16) 

where 𝑣௢ሺ𝑡ሻ is the observed velocity signal. In the trajec-
tory, the velocity minima correspond to the salient points 
𝑠𝑝௝, 𝑗 ൌ 0, … , 𝑁, where 𝑠𝑝଴ is the first sample, 𝑠𝑝ே is the last 
sample and 𝑠𝑝௝ is the sample  𝑡௠௜௡௝ ൉ 𝑓௠,  where 𝑓௠ is the 
sampling frequency. 

TABLE 1. Mathematical notations  
Symbol Meaning 

𝑁 Number of virtual target points 

𝑇 Temporal length of the signature 

ቄ𝐷௝, 𝑡଴௝, 𝜇୨, 𝜎୨
ଶቅ

௝ୀଵ

ே
 Sigma-Lognormal parameters of stroke 𝑗 

ቄ𝜃௦௝, 𝜃௘௝ቅ
ୀଵ

ே
 

Starting and ending angles of the link between 𝑡𝑝௝ିଵ 

and 𝑡𝑝௝ 

൛𝑡𝑝௝ൟ
௝ୀ଴

ே
 Virtual Target point of  stroke 𝑗 

൛𝑠𝑝௝ൟ
௝ୀ଴

ே
 Salient points (velocity minima) of original signature 

൛𝑠𝑝𝑟௝ൟ
௝ୀ଴

ே
 Salient points of reconstructed trajectory 

ቄ𝑡௠௜௡௝ቅ
௝ୀ଴

𝑵
 Time of the salient points  ൛𝑠𝑝௝ൟ

௝ୀ଴

ே
 and ൛𝑠𝑝𝑟௝ൟ

௝ୀ଴

ே
 

ሼ𝑥௢ሺ𝑡ሻ, 𝑦௢ሺ𝑡ሻሽ௧ୀ଴
்  Samples of the on-line original trajectory 

ሼ𝑥௥ሺ𝑡ሻ, 𝑦௥ሺ𝑡ሻሽ௧ୀ଴
்  Samples of the on-line reconstructed trajectory 

𝑣௢ሺ𝑡ሻ Velocity profile of the original movement  

𝑣௥ሺ𝑡ሻ Velocity profile of the reconstructed movement 

൛𝑣௝ሺ𝑡ሻൟ
௝ୀଵ

ே
 Velocity profile of stroke 𝑗, 0 ൏ 𝑡 ൏ 𝑇 

𝑆𝑁𝑅௩,𝑆𝑁𝑅௧ 
Signal-to-Noise Ratio between original and recon-

structed velocity and trajectory, respectively 

Page 4 of 12*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



M.A. FERRER ET AL.:  IDELOG: ITERATIVE TRAJECTORY AND VELOCITY SIGMA-LOGNORMAL PARAMETER EXTRACTION 5 

 

3.2 Kinematic Parameter Extraction 
This section approaches each velocity peak as a lognormal 
function with parameters 𝑡଴௝, 𝜇௝ and 𝜎௝. As shown in Figure 
2, there are many lognormals that reasonably fit a given 
peak unless we fix the initial time 𝑡଴௝ . beforehand. There-
fore, we first calculate 𝑡଴௝ based on a biological argument, 
and later, 𝜇௝ and 𝜎௝.  

Estimation of 𝑡଴௝ 

It is well known that the movement action originates in the 
cortex, and then passes through the Basal Ganglia, which 
decodes the message in order to activate the different pools 
of neurons which innervate the muscles to carry out a par-
ticular movement. In a well-learned movement, it makes 
sense to assume that the times between the movement ac-
tions are originated in the cortex. Thus, the movement ac-
tion carried out by the motor system should be similar for 
each stroke. In our estimation procedure, this transmission 
time is represented by 𝑡௠௜௡,௝ିଵ െ 𝑡଴௝ , which is approxi-
mately 0.5 seconds [35]. Specifically, in our case, 𝑡଴௝ ൌ
𝑡௠௜௡,௝ିଵ െ 0.5.  

Initial Estimation of 𝜇௝ and 𝜎௝
ଶ 

iDeLog tries to fit the velocity peak 𝑣௢௝
ሺ𝑡ሻ with the lognor-

mal 𝑣௝ ቀ𝑡; 𝑡଴௝, 𝜇୨, 𝜎୨
ଶቁ through a nonlinear least-squares min-

imization.  The function to minimize is: 

𝜇̂୨, 𝜎ො୨
ଶ ൌ argmin

ఓౠ,ఙౠ
మ

න ቚ𝑣௝ ቀ𝑡; 𝑡଴௝, 𝜇୨, 𝜎୨
ଶቁ െ 𝑣௡௝ሺ𝑡ሻቚ

ଶ
𝑑𝑡

௧೘೔೙,ೕ

௧ୀ௧೘೔೙,ೕషభ

 (17) 

where 

𝑣௡௝
ሺ𝑡ሻ ൌ 𝑣௢௝

ሺ𝑡ሻ/ න 𝑣௢௝
ሺ𝑡ሻ𝑑𝑡

்

௧ୀ଴
 (18) 

since the area of the lognormal function is equal to 1. 
The minimization is performed by means of a Leven-

berg-Marquardt Algorithm (LMA), which is used in many 
applications in solving generic curve-fitting problems [36].  

3.3 Spatial Parameters Extraction 

The spatial parameters of the Sigma-Lognormal model 
refer to the virtual target points 𝑡𝑝௝ and their starting and 
ending angles, 𝜃௦௝ and 𝜃௘௝, respectively. From these param-
eters, the trajectory is built up by overlapping the arc of the 
circumferences linking consecutive virtual target points. 

Thus, a virtual target point involves two arcs of circumfer-
ence: one that goes from the target point 𝑡𝑝௝ିଵ to 𝑡𝑝௝ and 
anoher that goes from the target point 𝑡𝑝௝ to 𝑡𝑝௝ାଵ. The first 
one ends at 𝑡𝑝௝with ending angle 𝜃௘௝ while the second one 
starts at 𝑡𝑝௝ with starting angle 𝜃௦௝. The overlap between 
the circumference arcs generates a trajectory with a higher 
curvature, or salient point, around the virtual target point. 
The value of 𝐷௝ is determined by the length of the circum-
ference arcs between virtual target points. 

Note that virtual target points are also related to velocity 
minima, which generally coincide with salient points.  A 
virtual target point marks the end of a stroke and the start 
of the next one: the overlap of the speed down to the end 
of a stroke (tail of the lognormal) with the speed up to the 
start of the next stroke (initial rise of the lognormal) gener-
ates a velocity minimum. 

Location of the Initial Virtual Target Points 𝑡𝑝௝  

iDeLog estimates the initial virtual target points directly 
from the observed trajectory. Each salient point 𝑠𝑝௝ is asso-
ciated with the virtual target points 𝑡𝑝௝, 𝑗 ൌ 0, … , 𝑁. In 
iDeLog, 𝑡𝑝଴ ൌ 𝑠𝑝଴ and  𝑡𝑝ே ൌ 𝑠𝑝ே which are the first and 
last points of the trajectory, respectively. The virtual target 
point 𝑡𝑝௝ is calculated using 𝑠𝑝௝ିଵ, 𝑠𝑝௝ and 𝑠𝑝௝ାଵ, 𝑗 ൌ
1, … , 𝑁 െ 1, which form a triangle. The initial virtual target 
point is located on the median of the vertex 𝑠𝑝௝, which is a 
straight line through the vertex 𝑠𝑝௝ and the midpoint 
ሺ𝑠𝑝௝ିଵ ൅ 𝑠𝑝௝ାଵሻ/2 of the opposite side, at a distance 𝑙𝑡𝑝௝ 
from the vertex 𝑠𝑝௝ defined as: 

𝑙𝑡𝑝௝ ൌ ℎ𝑡𝑝௝൫1 ൅ cos൫𝜑௝/2൯/2൯ (19) 
where ℎ𝑡𝑝௝ is the distance between the vertex 𝑠𝑝௝ and the 
midpoint of the opposite side, and 𝜑௝ is the angle of the 
vertex 𝑠𝑝௝. Thus, when using the cosine function, the 
sharper the angle of the vertex 𝑠𝑝௝, the farther 𝑡𝑝௝ is 
from 𝑠𝑝௝. An example of this procedure is shown in Figure 
3.  

Estimation of Starting 𝜃௦௝ and Ending 𝜃௘௝ Angles 

The angles of the circumferences that link virtual target 
points are defined by their starting 𝜃௦௝ and ending 𝜃௘௝  an-
gles ∀𝑗 ൌ 1, … , 𝑁, where 𝑁 is the number of strokes. As the 
starting and ending angles are constitute a spatial charac-
teristic of the signature, iDeLog estimates these parameters 
from the observed spatial trajectory. 

Fig. 3. Estimation of the target point 𝑡𝑝ଶ from the salient points 
𝑠𝑝ଵ, 𝑠𝑝ଶ, and 𝑠𝑝ଷ 

Fig. 4. Estimation of values 𝜃௦ଶ and 𝜃௘ଶfor the second stroke of the 

trajectory 
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They are calculated as follows: 
1. The middle point 𝑚𝑝௝ of the trajectory of the 𝑗௧௛ stroke 

between the salient points 𝑠𝑝௝ିଵ and 𝑠𝑝௝ is calculated. 
The term middle point refers to the fact the distance on 
the trajectory from 𝑚𝑝௝ to 𝑠𝑝௝ିଵ and to 𝑠𝑝௝ is equal. 

2. A circumference that passes by these three points is 
obtained. 

3. The angle 𝜃௦௝ is computed as the angle of the tangent 
to the circumference at 𝑠𝑝௝ିଵ. Then, the angle 𝜃௘௝  is ob-
tained as the angle of the tangent to the circumference 
at 𝑠𝑝௝. This procedure is illustrated in Figure 4.   

3.4 Reconstruction of the Trajectory 

From the above procedure, we have an initial gross estima-
tion of the parameters of the Sigma-Lognormal model 
𝑡଴௝, 𝜇୨, 𝜎୨

ଶ, 𝑡𝑝௝, 𝜃௦௝ and 𝜃௘௝, 𝑗 ൌ 1, … , 𝑁 from the observed 
samples ሼ𝑥௢ሺ𝑡ሻ, 𝑦௢ሺ𝑡ሻሽ, 0 ൏ 𝑡 ൏ 𝑇. The parameters allow us 
to calculate the parameter 𝐷௝ and obtain the reconstructed 
spatial trajectory 𝑇௥ሺ𝑡ሻ ൌ ሼ𝑥௥ሺ𝑡ሻ, 𝑦௥ሺ𝑡ሻሽ following equations 
(3) and (4). The salient points of the reconstructed spatial 
trajectory 𝑠𝑝𝑟௝, 𝑗 ൌ 0, … , 𝑁 are obtained through the min-
ima of the reconstructed velocity 𝑣௥ሺ𝑡ሻ, which is the deriv-
ative of the reconstructed trajectory.  

Estimation of 𝐷௝ 
The value of the lognormal amplitude 𝐷௝ describes the am-
plitude of the movement, and is defined without ambigu-
ity by the position of the virtual target points 𝑡𝑝௝ିଵ, 𝑡𝑝௝, 𝜃௦,௝ 
and 𝜃௘,௝. It is calculated as: 

𝐷௝ ൌ 𝑟௝ ቀ𝜃௘௝ െ 𝜃௦௝ቁ ,   𝑗 ∈  1, … 𝑁 (20)

where 𝑟௝ is the radius of the circumference that goes from 
𝑡𝑝௝ିଵ to 𝑡𝑝௝. To calculate 𝑟௝, we first calculate the center of 
the circumference as the intersection of the line that crosses 
𝑡𝑝௝ିଵ with slope െ1/tanሺ𝜃௦௝ሻ and the line that crosses 𝑡𝑝௝ 
with slope െ1/tanሺ𝜃௘௝ሻ. Then, 𝑟௝ is the distance from the 
center of the circumference to either 𝑡𝑝௝ିଵ or 𝑡𝑝௝. This pro-
cedure is illustrated in Figure 5. 

It should be pointed out that the Sigma-Lognormal 
model overdefines the circumference with five parameters:  
𝐷௝, 𝑡𝑝௝ିଵ, 𝑡𝑝௝, 𝜃௦,௝ and 𝜃௘,௝, whereas a circumference only re-
quires three parameters.  

An example of a recovered spatial trajectory with these 
initial gross parameters is shown in Figure 6.  

3.5 Step 2: Optimization  

The basic idea underlying the optimization is to update the 
position of the virtual target points 𝑡𝑝௝, 𝑗 ൌ 1, … , 𝑁 െ 1 to 
improve both the reconstructed trajectory and velocity 

 

  
Fig. 5. Procedure to calculate 𝐷௝, given the target points 𝑡𝑝௝ିଵ, 

𝑡𝑝௝, and their start and end angles 𝜃௦௝ and 𝜃௘௝ 

 

Fig. 6. Observed and reconstructed trajectory and velocity 
 of a signature with initial parameters 

 

 
 

Fig. 7. Left: Observed and reconstructed trajectory, salient points, virtual target points 
and arcs of circumference obtained with the initial parameters. Right: Observed and 

reconstructed signature after virtual target point displacement.  
Fig. 8. Observed and reconstructed trajec-

tory and velocity after optimization 
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profile simultaneously. Thus, a sort of visual feedback is 
included in the procedure without slowing down the 
open-loop motor control. 

The improvement is done by means of an iterative Least 
Mean Squares (LMS) algorithm applied to each stroke. Be-
cause a movement at a virtual target point modifies the en-
tire trajectory, adapting all of them at the same time would 
mean that the iterative algorithm would not converge. For 
the sake of convergence, the optimization has to be carried 
out stroke by stroke in the same order as a natural human 
movement. 
The optimization is conducted as follows:  
1. Set 𝑗 ൌ 1.  
2. Refine the 𝑗௧௛ virtual target point. 
3. Calculate the error or difference 𝐸𝑠ሬሬሬሬ⃗ ௝  between the ob-

served and reconstructed trajectory salient points 
𝐸𝑠ሬሬሬሬ⃗ ௝ ൌ 𝑠𝑝௝ െ 𝑠𝑝𝑟௝. 

4. Update the virtual target point as 𝑡𝑝௝ ൌ 𝑡𝑝௝ ൅ 𝜂𝐸𝑠ሬሬሬሬ⃗ ௝, 
where 0 ൏ 𝜂 ൏ 1. The value 𝜂 ൌ 1 represents the fast-
est fitting. 

5. With this new virtual target point, reconstruct the en-
tire trajectory 𝑇௥ሺ𝑡ሻ ൌ ሼ𝑥௥ሺ𝑡ሻ, 𝑦௥ሺ𝑡ሻሽ and calculate the 
new salient points 𝑠𝑝𝑟௝, 𝑗 ൌ 1, … , 𝑁 െ 1. 

6. Set 𝑗 ൌ 𝑗 ൅ 1 and go to 2 if 𝑗 ൏ 𝑁. 
An illustration of this procedure can be found in Figure 7. 
As can be seen, there is a significant improvement of the 
reconstructed trajectory and velocity. The improvement of 
the optimization over a signature is shown in Figure 8.  

This optimization can be repeated as many times as nec-
essary. In our experiments, the optimization barely im-
proves the SNR of the reconstructed trajectory and velocity 
after two iterations when 𝜂 ൌ 1.  

The iDeLog is summarized in algorithm 1.  

4. EXPERIMENTS 
Our evaluation here aimed to measure the ability of 
iDeLog to extract the Sigma-Lognormal parameters of con-
tinuous long and complex human movements such as a 
handwritten signature. These are supposed to be executed 
rapidly, and involve a large number of muscles, which is 
consistent with the underlying hypotheses of the Kine-
matic Theory of rapid human movements. The experi-
ments were performed with genuine signatures from exist-
ing databases, as these are well-learned movements writ-
ten naturally. This avoided biased measures due to con-
strained and sluggish movements of imitated signatures 

The ability of iDeLog to reconstruct a handwritten sig-
nature will be compared with [27][6] through ScriptStudio. 
It is an application used to automatically extract the Sigma-
Lognormal parameters of rapid and complex human 
movements. Its robustness and flexibility have been 
demonstrated in numerous studies, as stated in Section 1. 
The comparison is performed in terms of Signal-to-Noise 
Ratio and Equal Error Rate over several publicly available 
databases and Automatic Signature Verifiers.  

4.1 Databases 

Three on-line signature databases were selected. The first 
were real on-line genuine signatures from BiosecureID-
SONOFF [37], consisting of 16 specimens from 132 users. 
The signatures were acquired by a WACOM tablet. The 
files include the 𝑥- and 𝑦-coordinates of the trajectory and 
the pressure. The sampling frequency is 100 samples per 
second. 

The second database was the MCYT100 sub-corpus [38]. 
This comprises the 100 first users of the full MCYT-330 da-
tabase, whose signatures were also captured by a WACOM 
tablet. It contains 25 genuine signatures per user. The da-
tabase provides the 𝑥- and 𝑦-coordinates of the trajectory 
and the pressure. The sampling frequency is 100 Hz. 

The BiosecureID-SONOFF and MCYT databases were 
selected since they also include pen-ups. Thus, we could 
test the performance of iDeLog in reconstructing continu-
ous long and complex movements. 

The third database was the SUSIGVisual sub-corpus 
[39]. This database contains 94 users, with 20 genuine sig-
natures per user.  The information provided for each sig-
nature are the 𝑥- and 𝑦-coordinates of the trajectory and 
the pressure. The sampling frequency is 100 Hz. This sub-
corpus was collected with an LCD touch device which 
does not capture pen-up movements. As a result, there was 
some jitter in the sampling period, leading to noisy lognor-
mals.  

The SUSIGVisual database does not contain pen-ups, 
but rather, a concatenated sequence of pen-downs. In such 

Algorithm 1. iDeLog for Sigma-Lognormal parameter extraction 
% Input: On-line samples of an observed signature: ሺ𝑥௢, 𝑦௢ሻ
% Output: Sigma‐Lognormal parameters ሺ𝑡଴௝, 𝜇௝, 𝜎௝, 𝑡𝑝௝, 𝜃௦,௝, 𝜃௘,௝)

ሾ𝑥௖, 𝑦௖ሿ ൌ 8 െ connected_trajectoryሺ𝑥௢, 𝑦௢ሻ 
𝑣௢ ൌ Velocity_profileሺ𝑥௢, 𝑦௢ሻ 
𝑁 ൌ Number_of_velocity_minimaሺ𝑣௢ሻ 
𝑡௠௜௡௝ ൌ Time_of_velocity_minimaሺ𝑣௢ሻ 
% Location of velocity minima on 8-connected trajectory
𝑠𝑝௝ ൌ SampleLocation_on_8c_trajectoryሺ𝑡௠௜௡௝, 𝑥௢, 𝑦௢, 𝑥௖, 𝑦௖ሻ
% Velocity profiles between velocity minima 
𝑣௢௝ ൌ Velocity_lobeሺ𝑣௢, 𝑡௠௜௡௝ሻ 
% First step: initial set of Sigma-Lognormal parameters. 
For 𝑗 ൌ 1: 𝑁        % For each stroke 𝑗 

% Lognormal parameters  from velocity 
𝑡଴௝ ൌ Temporal_offsetሺ𝑡௠௜௡௝ሻ 

ൣ𝜇௝, 𝜎௝൧ ൌ Levenberg-Marquardt Algorithmሺ𝑣௢௝ሻ
% Lognormal parameters  from trajectory 
% Virtual points 𝑡𝑝௝, angles 𝜃௦௝, 𝜃௘௝ and areas 𝐷௝ 
𝑡𝑝௝ ൌ Triangularizationሺ𝑠𝑝௝. 𝑥௖, 𝑦௖ሻ 

ቂ𝜃௦௝, 𝜃௘௝ቃ ൌ Trajectory_slopeሺ𝑡𝑝௝, 𝑠𝑝௝. 𝑥௖, 𝑦௖ሻ 

𝐷௝ ൌ Lognormal_areaሺ𝑡𝑝௝, 𝜃௦,௝, 𝜃௘,௝ሻ 
ൣ𝑥௥, 𝑦௥, 𝑠𝑝𝑟௝൧ ൌ Reconstruct_trajectoryሺ𝑡଴௝, 𝜇௝, 𝜎௝, 𝑡𝑝௝, 𝜃௦,௝, 𝜃௘,௝ሻ

end
% Second step: parameter refinement by moving virtual target points
For 𝑗 ൌ 1: 𝑁

𝐸𝑠ሬሬሬሬ⃗ ௝ ൌ 𝑠𝑝௝ െ 𝑠𝑝𝑟௝ % Error at velocity mínimum
𝑡𝑝௝ ൌ 𝑡𝑝௝ ൅ 𝜂𝐸𝑠ሬሬሬሬ⃗ ௝  % Update virtual target point

ቂ𝜃௦௝, 𝜃௘௝ቃ ൌ Trajectory_slopeሺ𝑡𝑝௝, 𝑠𝑝௝. 𝑥௖, 𝑦௖ሻ 

𝐷௝ ൌ Lognormal_amplitudesሺ𝑡𝑝௝, 𝜃௦,௝, 𝜃௘,௝ሻ
ൣ𝑥௥, 𝑦௥, 𝑠𝑝𝑟௝൧ ൌ Reconstruct_trajectoryሺ𝑡଴௝, 𝜇௝, 𝜎௝, 𝑡𝑝௝, 𝜃௦,௝, 𝜃௘,௝ሻ

end
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a situation, when we compare iDeLog and ScriptStudio, 
the ScriptStudio performance appears to be better [28].  

4.2 Quantitative Measures 
The reconstruction results are given in the following terms: 
(1) Signal-to-Noise Ratio (𝑆𝑁𝑅), and (2) the  𝑆𝑁𝑅 and the 
number of lognormal detected ratio (𝑆𝑁𝑅/𝑁𝑏𝐿𝑜𝑔) for both 
trajectory and velocity. 

The Signal-to-Noise Ratio for trajectory, 𝑆𝑁𝑅௧, measures 
the difference between the observed and reconstructed tra-
jectories. If the observed trajectory is preprocessed, the 
measure compares the observed preprocessed trajectory 
with the reconstructed one.  Thus, we have: 

𝑆𝑁𝑅௧ ൌ 10log ൭
׬ ൫𝑥௢௣ሺ𝑡ሻଶ ൅ 𝑦௢௣ሺ𝑡ሻଶ൯𝑑𝑡

்

௧ୀ଴

׬ ሺ𝑥௢௥ሺ𝑡ሻଶ ൅ 𝑦௢௥ሺ𝑡ሻଶሻ𝑑𝑡
்

௧ୀ଴

൱ (21) 

where the numerator 𝑥௢௣ሺ𝑡ሻ ൌ 𝑥௢ሺ𝑡ሻ െ 𝑥௢തതതሺ𝑡ሻ, 𝑦௢௣ሺ𝑡ሻ ൌ
𝑦௢ሺ𝑡ሻ െ 𝑦௥ഥ ሺ𝑡ሻ and the denominator  𝑥௢௥ሺ𝑡ሻ ൌ 𝑥௢ሺ𝑡ሻ െ 𝑥௥ሺ𝑡ሻ, 
𝑦௢௥ሺ𝑡ሻ ൌ 𝑦௢ሺ𝑡ሻ െ 𝑦௥ሺ𝑡ሻ. The subindexes 𝑜 and 𝑟 denote re-
spectively the observed and the reconstructed signal.  

The Signal-to-Noise Ratio for velocity 𝑆𝑁𝑅௩ is the one 
used by ScriptStudio. This measure is considered to index 
the lognormality of the movements. As these experiments 
dealt with genuine signatures which are supposed to be 
lognormal, given that they are handwritten fluently, the 
higher the 𝑆𝑁𝑅 obtained, the better the reconstruction. The 
𝑆𝑁𝑅௩ is defined as: 

𝑆𝑁𝑅௩ ൌ 10log ൭
׬ 𝑣௢ሺ𝑡ሻଶ்

௧ୀ଴
𝑑𝑡

׬ ሺ𝑣଴ሺ𝑡ሻ െ 𝑣௥ሺ𝑡ሻሻଶ𝑑𝑡
்

௧ୀ଴

൱ (22) 

The ratio of the 𝑆𝑁𝑅௩ and the number of lognormals de-
tected 𝑆𝑁𝑅௩/𝑁𝑏𝐿𝑜𝑔 has been proposed as a variable that 
reflects the writer’s ability to make regular movements 
[40][41]. In evaluating a procedure, such a ratio takes into 
account the number of lognormals required by the proce-
dure to reach the given 𝑆𝑁𝑅௩. Similarly, this is defined by 
𝑆𝑁𝑅௧/𝑁𝑏𝐿𝑜𝑔. 

The quantitative measures described in this section were 
obtained for each single specimen. The averaged results 
and their standard deviation are provided for each experi-
ment. For each result, a balanced two-way ANOVA analy-
sis was run to check for the significance of the observed 
differences, based on 𝑝 ൏ 0.05 values.  

4.3 Experiment 1: ScriptStudio and iDeLog 

For a fair comparison between ScriptStudio and iDeLog, 
the observed signal used as input to both procedures 

should be the same. Consequently, the input to iDeLog 
and ScriptStudio are interpolated and smoothed. Further-
more, to measure the ability to decompose continuous long 
complex movements, both iDeLog and ScripStudio were 
fed with the whole signature, including pen-ups.  

The results are shown in Table 2.  It is worth pointing 
out that the SNRs in Table 2 are calculated in the same way 
as ScriptStudio, i.e., as the ratio between the reconstructed 
signal and the preprocessed observed one. The ANOVA 
analysis comparing ScriptStudio and iDeLog resulted in p-
values lower that 0.05 in all cases shown in Table 2.  

As can be seen, the performance of ScriptStudio in fitting 
the velocity profile is significantly better than that of 
iDeLog, but the iDeLog does a significantly better job ad-
justing the trajectory. Furthermore, the standard deviation 
of 𝑆𝑁𝑅௩ is meaningfully lower in iDeLog than ScriptStu-
dio, which means iDeLog is a more stable procedure. 

The slight decrease in 𝑆𝑁𝑅௩ of iDeLog is attributed to the 
harder constraint of fitting the trajectory and velocity con-
currently. Conversely, this condition is believed to keep 
the standard deviation lower.  

It is worth mentioning that, as expected, the perfor-
mance of ScriptStudio on the SUSIGVisual database was 
significantly better than with the MCYT100 or Biose-
cureID-SONOFF. This was due to the fact that the 
SUSIGVisual database does not contain pen-ups.  This 
helps ScriptStudio to segment the signature in shorter 
pieces, therefore reducing the cumulative error in the ve-
locity. 

The question which arises is, since the trajectory is the 
integral of the velocity, how could a similar 𝑆𝑁𝑅௩ therefore 
result in such a different 𝑆𝑁𝑅௧? The answer seems to be re-
lated to the distribution of the error in the reconstructed 
velocity. 

Indeed, when adjusting the virtual target points in 
iDeLog, an error in the reconstruction of the velocity pro-
duces a new velocity deviation to compensate for the drift 
of the trajectory and to keep both trajectory and velocity 
errors as low as possible. It can therefore be said that the 
error is distributed along the whole signature. In the case 
of ScriptStudio, an error in the velocity is not compensated 
since the trajectory reconstruction is not checked. Thus, a 
missing or an extra lognormal or a deficient fit to a lognor-
mal results in an unrectified trajectory drift.  

Regarding the number of lognormals detected by 
ScriptStudio and iDeLog, Table 3 reports the results. Here 

TABLE 3 
MEAN AND STANDARD DEVIATION OF THE NUMBER OF 

LOGNORMALS DETECTED BY SCRIPTSTUDIO AND IDELOG 

 ScriptStudio 
iDeLog with/without 

smoothing 
with without 

Database 

𝑁
𝑏𝐿

𝑜𝑔
 

𝜎 ே
௕

௟௢
௚

 

𝑁
𝑏𝐿

𝑜𝑔
 

𝜎 ே
௕

௟௢
௚

 

𝑁
𝑏𝐿

𝑜𝑔
 

𝜎 ே
௕

௟௢
௚

 

BiosecureID 
MCYT100 

SUSIGVisual 

26.34 
28.24 
22.82 

11.37 
12.18 
8.26 

36.20 
36.50 
21.77 

18.58 
19.41 
10.10 

37.84 
44.31 
39.61 

19.60 
25.04 
21.24 

TABLE 2 
RESULTS OF SCRIPTSTUDIO AND IDELOG  

Database Procedure 

𝑆𝑁
𝑅

௧ 

𝜎 ௌ
ே

ோ
೟
 

𝑆𝑁
𝑅

௧
/𝑁

𝑏𝐿
𝑜𝑔

 

𝑆𝑁
𝑅

௩
 

𝜎 ௌ
ே

ோ
ೡ
 

𝑆𝑁
𝑅

௩
/𝑁

𝑏𝐿
𝑜𝑔

 

BiosecureID 
ScriptStudio 

iDeLog   
6.47dB 
23.28dB 

5.48 
5.67 

0.283 
0.880 

16.35dB 
15.22dB 

4.88 
1.19 

0.740 
0.569 

MCYT100 
ScriptStudio 

iDeLog  
6.57dB 
21.33dB 

5.50 
5.30 

0.298 
0.905 

16.02dB 
15.22dB 

4.94 
1.21 

0.698 
0.630 

SUSIG 
Visual 

ScriptStudio 
iDeLog  

16.39dB 
24.11dB 

7.02 
5.49 

0.808 
1.338 

17.78dB 
15.19dB 

4.27 
1.25 

0.881 
0.841 
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again, the statistical analysis confirms that all the results 
were significantly different. As can be seen, the number of 
lognormals detected by ScriptStudio is more stable. This is 
due to the stop criteria in the stroke extraction procedure. 
On the one hand, ScriptStudio stops the stroke extraction 
when the current reconstruction is considered good 
enough or the current number of strokes is larger than a 
maximum value, or when there is no set of characteristic 
points left. On the other hand, iDeLog extracts as many 
strokes as there are minima found in the velocity profile. 
Obviously, if there is no smoothing, the number of strokes 
is larger, as can be seen in Table 3. Thus, the smoothing 
reduces the number of lognormals in this case.  

4.4 Experiment 2: Smoothing vs. Observed Signal 

For a deeper examination of the effect of smoothing in 
iDeLog, we analyzed the SNR results in these two condi-
tions. ScriptStudio was not part of this analysis since the 
𝑆𝑁𝑅௩ of decomposing an observed signal without smooth-
ing is not available as a feature in the licensed version of 
ScripStudio. The results obtained with and without 
smoothing are summarized in Table 4. Note that in the case 
of no smoothing, the SNRs compare the reconstructed sig-
nal with the observed one. Here, the ANOVA analysis de-
tected only significant differences in the case of 𝑆𝑁𝑅௩ for 
the SUSIGVisual database. 

As can be seen in Table 4, there is no clear tendency in 
favor of using or not using smoothing, except in the case of 
𝑆𝑁𝑅௩ because of the noisy velocity profiles present, possi-
bly caused by a jitter in the sampling frequency. 

4.5 Experiment 3: Automatic Signature Verification 
with the Reconstructed Databases 

The purpose of this experiment was not to propose iDeLog 
as an Automatic Signature Verifier (ASV). Instead, we 
were keen on identifying the kind of reconstructed signa-
tures that has more similarities to real signatures perfor-
mance-wise, in a signature verification test scenario. On-
line signature verification requires a precise reconstruction 
not only in the velocity domain, but also in the trajectory 
domain. Here, it is expected that iDeLog offers many ad-
vantages.  

Automatic Signature Verification  
An automatic signature verifier compares a questioned 
signature with a set of undoubted signatures from a signer. 

The result of such a comparison is usually quantified as a 
score. If the score is greater than a given threshold, the 
questioned signature is accepted as genuine, otherwise it 
is rejected. 

The performance of an automatic signature verifier is 
measured in terms of False Acceptance Rate (FAR) and 
False Rejection Rate (FRR). The Equal Error Rate (EER) is 
the verification error when FAR is equal to FRR. The De-
tection Error Tradeoff (DET) curve plots the FAR against 
the FRR.  

Two different on-line Automatic Signature Verifiers 
(ASVs) were chosen to cover a wide range of signature 
properties in the test: 
1. A Dynamic Time Warping (DTW)-based verifier that 

compares the dynamics of the questioned and refer-
ence signature using a DTW algorithm with Euclidean 
Distance [42]. 

2. A Manhattan distance (MD)-based verifier that com-
pares histograms of absolute and relative frequencies 
of the dynamics. The distance between histograms of 
reference and questioned signatures is calculated by 
means of the Manhattan distance [43]. 

These experiments were performed using the trajectory, 
velocity, acceleration and pressure as input parameters. In 
the case of the original databases, the velocity and acceler-
ation were computed as the first and second derivatives of 
the trajectory; for the reconstructed databases, the trajec-
tory was obtained as the integral of the velocity and the 
acceleration as the first derivative of the velocity. The pres-
sures in the reconstructed database were 1 for pen-downs 
and 0 for pen-ups. 

All the verifiers were trained with the 5 first signatures 
of each signer, while the remaining genuine signatures 
were used for testing the false rejection rate. In all cases, 
the false acceptance rate was obtained with the genuine 
test samples from all the remaining users, considered as 
potential random forgeries. 

EER and DET comparison  
This test consists in decomposing the entire signature da-
tabase as a sum of lognormals and reconstructing them 
from the Sigma-Lognormal parameters. The Automatic 
Signature Verifiers were run with the original and recon-
structed databases. The more the results were similar, the 
more accurate the reconstruction was. Specifically, we 

TABLE 4 
RESULTS OF IDELOG WITH AND WITHOUT SMOOTHING 

Database Smoothing 

𝑆𝑁
𝑅

௧ 

𝜎 ௌ
ே

ோ
೟
 

𝑆𝑁
𝑅

௧/
𝑁

𝑏𝐿
𝑜𝑔

 

𝑆𝑁
𝑅

௩
 

𝜎 ௌ
ே

ோ
೟
 

𝑆𝑁
𝑅

௩
/𝑁

𝑏𝐿
𝑜𝑔

 

BiosecureID 
Yes 
No 

23.28dB 
22.63dB 

5.67 
5.16 

0.880 
0.811 

15.22dB 
16.20dB 

1.19 
1.91 

0.569 
0.579 

MCYT100 
Yes 
No  

21.33dB 
20.81dB 

5.30 
4.65 

0.905 
0.748 

15.22dB 
15.31dB 

1.21 
1.87 

0.630 
0.537 

SUSIG 
Visual 

Yes 
No 

24.11dB 
21.63dB 

5.49 
6.07 

1.338 
0.709 

15.19dB 
10.25dB 

1.25 
3.68 

0.841 
0.358 

 

TABLE 5 
AREA BETWEEN THE DET CURVES OF THE ORIGINAL AND RE-

CONSTRUCTED SIGNATURES DATABASES. 

V
er

if
ie

r 

Database 

Reconstructed with 

ScriptStudio 

iDeLog 
with 

smoothing 

iDelog 
without 

smoothing 

D
T

W
 BiosecureID 

MCYT100 
SUSIGVisual 

0.0138 
0.1230 
0.0185 

0.0120 
0.0086 
0.0077 

0.0111 
0.0083 
0.0085 

M
D

 BiosecureID 
MCYT100 

SUSIGVisual 

0.0333 
0.0338 
0.0282 

0.0155 
0.0095 
0.0236 

0.0158 
0.0105 
0.0359 
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compared the original database with the databases recon-
structed by ScriptStudio and iDeLog with smoothing, and 
by iDeLog without smoothing.  

The DET curves, along with the EERs, obtained with the 
different databases are shown in Figures 9 and 10 for DTW 
and MD, respectively. To compare the DET curves, Table 5 
shows the area between the DET curves of the original da-
tabase and those of the reconstructed databases. The lower 
this area, the better the reconstruction.  

As can be seen, the iDeLog reconstructed database dis-
plays similar DET curves and EERs as the original one in 
the three databases using the DTW verifier. However, in 
accordance with our results above, there is no clear indica-
tion for using or not using smoothing.  

In the case of the MD verifier, we had different findings. 
The EERs of the iDeLog reconstructed databases were sim-
ilar, but lower than the EERs obtained with the original da-
tabase. Furthermore, the EERs obtained with smoothing 
outperformed the EERs without smoothing. This could be 
due to the fact the MD verifier uses features based on his-
tograms of dynamic characteristics, such as velocity and 
acceleration. As a result, it seems that smoothed velocity 
profiles result in more discriminative histograms.  

A second test was conducted in both verifiers using only 

the velocity values as input parameters. This is because 
ScriptStudio focuses only on velocity. The EERs were 
higher in nearly all the cases since the verifiers were fed 
with less information in these cases. The same ranking ten-
dency with regard to the DET curves was observed in the 
results.  

5. CONCLUSIONS 
This paper presented iDeLog, a novel framework for cal-
culating the parameters of the Sigma-Lognormal model. 
The framework is designed to handle continuous, long and 
complex movements, where the trajectory and velocity re-
constructions are required simultaneously.  

iDeLog depends on motor equivalence theory and the 
hypothesis of a visual feedback compatible with open-loop 
motor control. Thus, it extracts the spatial and kinematic 
parameters of the Sigma-Lognormal model separately, and 
then performs a joint parameter optimization, moving the 
virtual target points. 

The experiments conducted show that statistically, 
iDeLog is able to reconstruct the trajectory significantly 
better than ScriptStudio when movement is continuous, 
long and complex, as is the case of handwritten signatures. 

 
Fig. 9. DET curves of the DTW automatic signature verifier with the original databases and the reconstructed databases with ScripStudio, 

iDeLog with smoothing, and with iDeLog without smoothing. The databases are BiosecureID, MCYT100 and SUSIGVisual. 

 

 
Fig. 10. DET curves of the Manhattan distance automatic signature verifier with the original and the reconstructed databases with Scrip-

Studio, iDeLog with smoothing, and with iDeLog without smoothing. The databases are BiosecureID, MCYT100 and SUSIGVisual. 
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However, iDeLog provides poorer results than ScripStu-
dio in reconstructing velocity, which is probably due to the 
trade-off between trajectory and velocity in iDeLog.  

iDeLog also provides the possibility of avoiding the ini-
tial preprocessing, which thus allows it to retain the statis-
tical performance, except in the case of the velocity, where 
the input is noisy. This could be an advantage for some 
verifiers, as seen in the MD results.  

The new procedure is expected to represent a further 
step forward for applications based on the Sigma-Lognor-
mal model and on the Kinematic Theory, in which both the 
velocity and trajectory reconstructions are important. 
Moreover, iDeLog can be especially useful in those cases 
where there is some information in high frequency compo-
nents, and therefore, where it would be unnecessary to 
complete a smoothing preprocessing stage.  
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