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iDelLog: Iterative Dual Spatial and Kinematic
Extraction of Sigma-Lognormal Parameters
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Abstract—The Kinematic Theory of rapid movements and its associated Sigma-Lognormal model have been extensively used
in a large variety of applications. While the physical and biological meaning of the model have been widely tested and validated
for rapid movements, some shortcomings have been detected when it is used with continuous long and complex movements. To
alleviate such drawbacks, and inspired by the motor equivalence theory and a conceivable visual feedback, this paper proposes
a novel framework to extract the Sigma-Lognormal parameters, namely iDeLog. Specifically, iDeLog consists of two steps. The
first one, influenced by the motor equivalence model, separately derives an initial action plan defined by a set of virtual points and
angles from the trajectory and a sequence of lognormals from the velocity. In the second step, based on a hypothetical visual
feedback compatible with an open-loop motor control, the virtual target points of the action plan are iteratively moved to improve
the matching between the observed and reconstructed trajectory and velocity. During experiments conducted with handwritten
signatures, iDelLog obtained promising results as compared to the previous development of the Sigma-Lognormal.

Index Terms—Biometrics, Kinematic theory of rapid movements,

1 INTRODUCTION

Human movement modelling is of great interest for de-
signing intelligent systems inspired by the under-
standing of fine motor control.

The velocity profile of human movement in general, and
handwriting in particular, has been the subject of many
different theories. Specifically, [1] discusses theories which
rely on neural networks, behavioral models, coupled oscil-
lator models, differential equation models, kinematic mod-
els, models exploiting minimization principles, etc. More-
over, many models exploit the properties of various math-
ematical functions, such as exponentials, Gaussians, beta
functions, splines, etc., to reproduce human movements.

Among the models which provide analytical represen-
tations, the Kinematic theory of rapid human movements
and its Delta and Sigma-Lognormal models have been ex-
tensively used to explain most of the basic phenomena re-
ported in classical studies on human motor control of rapid
and automated movements [2][3][4][5].

The Sigma-Lognormal model is based on the hypothesis
that the velocity of a neuromuscular system can be mod-
elled by a vector summation of a certain number of lognor-
mal functions, each of them defined by six parameters [6].

Over the last 10 years of uninterrupted use, the model
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has been challenged by many researchers, applying it to a
wide variety of practical applications such as the develop-
ment of Automatic Signature Verification systems [7], the
generation of duplicated signatures to improve training [8]
or the improvement of forgery detection [9]. It has also
been used to synthesize Western [10][11][12][13] and In-
dian [14] signatures. Beyond the handwritten signature
field, this model has been successfully applied to the fol-
lowing: the study and understanding of the evolution and
acquisition of handwriting skills [15], the development of
tools to help children learn handwriting [16], neuromuscu-
lar health care [17], the examination of biomedical systems
for detecting fine motor control problems associated with
brain strokes [18] and Parkinson’s disease [19], as well as
to the characterization of the cranio-caudal signature of a
turn [20]. Recently, the Kinematic theory of rapid move-
ments has been applied to many different areas, such as
handwriting generation [21], CAPTCHA [22], graffiti de-
sign [23], mouse movement analysis [24], gesture genera-
tion [25] and the study of articulation in voice processing
[26], among others.

Most of the above research calculate the Sigma-Lognor-
mal parameters through the Robust XZERO algorithm im-
plemented by the ScriptStudio application, which was pro-
posed in 2007 [27][6].

1.1 Our proposal

Without questioning the efficacy of Sigma-Lognormal
model, which works accurately with automated and rapid
movements, some shortcomings been seen when extract-
ing the parameters of continuous long and complex move-
ments. Incidentally, the main drawback observed has been
a certain degree of drift in the trajectory reconstruction. In
previous works, these issues are partially addressed by
cutting the long pieces of handwriting into smaller pieces

Published by the IEEE Computer Society
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Fig. 1. Block diagram of iDeLog framework to calculate the Sigma-Lognormal parameters of an on-line signature. Solid blue lines represent
observed movement, while dotted red lines represent reconstructed movement.

and reconstructing each of them independently to ensure
better reconstruction rates [7][8] [10][11][28]. Following a
new avenue, this paper aimed to establish a new frame-
work to extract the Sigma-Lognormal parameters relying
on the motor equivalence theory and a conceivable visual
feedback in long and complex movements.

It should be noted that it is not the goal of this work to
confirm or deny the validity of the motor equivalence the-
ory or to look into the subtle integration of a possible visual
feedback in automated human movements. Rather, our re-
search aims to provide new insights into a more robust pa-
rameter extraction of the Sigma-Lognormal model from a
novel point of view in the hopes of advancing the frontiers
of the Sigma-Lognormal model inspired by such hypothe-
ses.

The motor equivalence model, also known as the De-
grees of Freedom (DoF) problem [29][30], suggests that the
brain stores the movements aimed at performing a single
task in two steps. The first step is effector-independent, and
stores the movement in an abstract form as a spatial se-
quence of points representing the action plan. The second
step is effector-dependent, and consists in a sequence of mo-
tor commands directed at obtaining particular muscular
contractions and articulatory movements in order to exe-
cute a given action plan [31].

Additionally, in a rapid and short movement, it is con-
ceivable that the planned and executed movements are
matched. However, in long movements, there will be a
likely drift between the planed movement and its execu-
tion, which would require some corrections. [32] looks at
the interaction between visual feedback and automated
handwriting movements, and asserts that the visual feed-
back does not abort a movement when a drift exists in the
trajectory. Rather, a new stroke is added to correct the tra-
jectory towards the new target. Thus, the visual feedback
does not slow down open-loop movements to allow con-
trol of the motor output in a closed-loop mode.

The motor equivalence hypothesis, which divides hu-
man physical action into the cognitive plan and motor con-
trol, can be integrated into the Sigma-Lognormal model by
working out its parameter on the basis of a dual spatial and
kinematic calculation. As such, on the one hand, the action
plan defined by the virtual points and its angle would be
calculated from the observed trajectory. On the other hand,
the remaining parameters would be deduced from the ob-
served velocity.

The idea that visual feedback can modify a future stroke
when the trajectory drifts without slowing down the open-
loop motor control is useful for correcting the drift be-
tween the reconstructed and observed movements. We
consider such a hypothetical visual feedback in the param-
eter extraction procedure of the Sigma-Lognormal model,
which relies on well-learned automatic human movements
governed by open-loop motor control without a significant
visual feedback influence [33]; to that end, we propose an
optimization stage of the initial set of parameters extracted
by moving the virtual target points. As such, there is a sig-
nificant improvement in the trajectory reconstruction,
which is at the expense of a slight degradation of the veloc-
ity reconstruction.

On the bases of the above, the procedure for working out
the Sigma-Lognormal parameters is completely reformu-
lated. The novel procedure, which we call iDeLog in this
work, calculates the 8-connected trajectory and speed pro-
file of a given long and complex movement. Influenced by
the motor equivalence model, the action plan, the total
number of virtual target points, and the angles of their cir-
cular trajectories are dually derived from the trajectory,
and the velocity decomposed as a sum of weighed lognor-
mals. At this point, an initial reconstruction is obtained.
Applying visual feedback principles, the reconstructed
movement is iteratively optimized by moving the virtual
target points with the ensuing changes of the angles and
lognormal parameters. A block diagram of the procedure
is shown in Figure 1.
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The remainder of the paper is organized as follows: Sec-
tion II briefly reviews the Sigma-Lognormal model and pa-
rameter extraction. Section III is devoted to iDeLog, while
its evaluation and the related discussion are covered in
Section IV. Section V concludes the article.

2 SIGMA-LOGNORMAL MoODEL: A BRIEF REVIEW

2.1 The Sigma-Lognormal Model

The Kinematic Theory of rapid movements [2], from which
the Sigma-Lognormal model was developed [6], considers
that complex human movements consist of overlapping
strokes. Each stroke has a lognormal-shaped velocity pro-
file v;(t) defined as:

v; (t; toj,u]-,ojz) = D;A (t; toj s o'jz) =
2
D, [n(e-5)-w[) ®

= ex
O-j v ZT[(t - tOj) P 20_]2

where t is the time, toj the time of stroke occurrence, D; the

amplitude of the stroke, u; the stroke time delay and g; the
stroke response time, both on a logarithmic time scale.

The overlapping of these lognormals can produce a
complex trajectory from a hidden trajectory action plan.
Such an action plan consists of a sequence of virtual target
points linked together by circular arcs. Each arc is pro-
duced as a response of the motor system to a set of rhyth-
mic commands from the cerebellum. The overlap in time
of these movements results in:

N

L @] cos(¢;(0)) _ ,

70 = [ys0] = 2.2 singgy o) 24 (510,7) @
j=1

where N denotes the number of lognormals, or strokes, and

¢;(t) the angular position.

0,.—6;. In(t—ty.)—u;
¢j(t)=gsj+u 1 + erf (—’)]

3
- 7 ©)
where 6,; and 6; are respectively the starting angle and
the ending angle of the arc that links the two virtual target

points corresponding to the j** stroke. Note that this for-
mula describes the sweep from HS]. to Hej in a lognormal

timing. Finally, the trajectory is calculated as:
. N D; sin (¢]~ (t)) — sin (85].)
0=) a4 *)
“=i7ej ~ Usj|—cos (¢j(t)) + cos (st)
This formula converts angles into circular arcs and over-
laps them. Specifically, the j** term of the summation rep-

resents the arc of the circumference that links the virtual
target points tp;_; and tp;. The radius of this circumfer-
enceis D;/ (Hej — 951. ), and D; coincides with the arc length.
In this case, the virtual target points are defined by:

D [ sin(@;(T) = sin(6, )

Py =it g | —cos(e () + cos(d, | ©

where T is the duration of the signature.

2.2 Stroke Extraction
The procedure proposed in [27][6] starts by calculating
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I Velocity profile
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Fig. 2. Four lobes of an observed velocity profile with the points p,,
p3; and p, used to calculate the lognormal of the third lobe. Red cir-
cles: maximum and minimum from the observed velocity profile. Dot-
ted line: different lognormals approaching the third velocity lobe cal-
culated from different t,. All the lognormals are so similar that the
figure cannot tell them apart.

the magnitude of the velocity profile. To enhance the qual-
ity of the observed velocity signal, it is re-sampled at 200
Hz through cubic splines, and smoothed by a Chebyshev
filter [6][28].

The strokes are extracted according to the following it-
erative procedure:

1. The strokes are firstly identified in the velocity magni-
tude profile according to the lobes. In short, a lognor-
mal is defined by its maximum p; and the minimum
of the velocity lobes p, and p,. Figure 2 exemplifies
this step for the third lognormal.

2. The values of tos M and o; are obtained from p,, p3

and p,. Because any velocity lobe can be approached
similarly by many lognormals, as it is shown in Figure
2, if the values of p; and o are out of the expected
range, the values p, and p, are recalculated. Noise can
generate false positive strokes, and therefore, if the
area and the maximum of the lognormal are lower
than a specific threshold, the lognormal is discarded.

3. Once a stroke is identified, its velocity is reconstructed
and removed from the observed velocity profile. This
subtraction allows to uncover potential strokes whose
local maxima are hidden by a faster lognormal neigh-
bor.

4. The similarity between the preprocessed observed ve-
locity v, (t) and the reconstructed velocity profile v, (t)
is calculated by means of the signal-to-noise ratio, de-

fined as:
[ vo()? dt ) .
ftio(UO(t) - Ur(t))zdt ( )

5. The procedure then returns to point 1 and, considering
the subtracted velocity as the input velocity, the pro-
cess is repeated, until the SNR,, is larger than a given
threshold or the current number of strokes is larger
than a given maximum, or there are no sets of p,, ps
and p, points left.

SNR, = 1010g<

2.3 Stroke Parameter Estimation

The Robust XZERO algorithm [34] is used to estimate the
lognormal parameters that describe the velocity profile of
each stroke. Let s; be a stroke and p,, p; and p, its charac-
teristic points, which occur at times {t,}¢-, and
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{vo(ta)Ye=z, their corresponding velocity values. The
lognormal parameters T;, y;, 0; and D; that fit {v,(t,)}e=,
can be derived using different two-element combinations
of the lognormal characteristic points such as:

1
(—2—210g(ra )—s—— ifa=2p=3
B 210g(ra5)

o? 242 ’1+log2(raﬁ) ifa=2B3=4 (7)

ifa=3F=4

1
210g(r5a)
where log is the natural logarithm and 7,5 = ||, (t,)Il/

125 el

l—Z — 2log(1p4) —

ty —tg
pu = log (m) ®)
to=ty—erie )
— a,
D = |[75(ta)ll 0v2mexp (M + 272) —aq (10)

where a, f € {2,3,4},a < B and

Sotvo [T 41 ifi=2
50 +0 |5 ifi=

a; ={o? ifi=3 (11)

S 02+1 if i =4
kza 7|7 ifi=

The parameters are computed using all possible combina-
tions. The set of parameters which minimizes the least-
square error is kept as the solution.

2.4 Angle Estimation

The XZERO calculates the start 8; and end 6, angles that
link two virtual target points as follows:

05 = p(t3) — Ap(d(ts) —d(ty)) (12)
0. = ¢(t3) — Ap(d(ts) — d(t3)) (13)
where
_p(ts) — 9(t2)

A = 4ty — (e .

0 ifi=1

D —a

d(t;) = E[l +erf( al/m/g)] ifi=234 (15

D ifi=5

3 IDELOG: NOVEL SIGMA-LOGNORMAL
EXTRACTOR

The Robust XZERO is a velocity-based procedure, which is
prone to spatial deviations as the observed movement gets
longer. This is due to the fact that small deviations in the
velocity estimation are propagated over the entire move-
ment when integrating the velocity to obtain the trajectory,
thus resulting in an increased spatial deviation [28].

To alleviate this drawback, we rely on the motor equiv-
alence model and a conceivable visual feedback paradigm.
At a first step, a procedure to separately calculate the spa-
tial and kinematics Sigma-Lognormal parameters is de-
vised from the motor equivalence model hypothesis. Thus,
the deviations of the modeled velocity are compensated by

TABLE 1. Mathematical notations

Page 4 of 12

Meaning

N Number of virtual target points
T

Temporal length of the signature

Sigma-Lognormal parameters of stroke j

{ 6, BE]'} Starting and ending angles of the link between tp;_;
1 and tp;

{tv; };v=0 Virtual Target point of stroke j

{sp; }yzo Salient points (velocity minima) of original signature

{Sprj}lo Salient points of reconstructed trajectory

{tmin /]7:0 Time of the salient points {sp j}?l=0 and {sprj}lo

{20 (£, 56 (O} =0
{0, 7 (O}=0

Samples of the on-line original trajectory

Samples of the on-line reconstructed trajectory

V,(t) Velocity profile of the original movement

v, (t) Velocity profile of the reconstructed movement
N

{”j(t)}j:l Velocity profile of stroke j, 0 <t <T

SNR.SNR Signal-to-Noise Ratio between original and recon-
v structed velocity and trajectory, respectively

the spatial parameters, avoiding trajectory drift. At a sec-
ond step, from the visual feedback compatible with the
open-loop motor control hypothesis, the spatial parame-
ters of the Sigma-Lognormal model are optimized to im-
prove the fitting between the observed and reconstructed
movements. Thus, a dual trajectory and velocity optimiza-
tion are carried out.

This section describes these new procedures based on
the above underlying ideas. Specifically, we describe the
stroke segmentation, the extraction of the spatial and kine-
matic Sigma-Lognormal parameters and their posterior
optimization. We call this new framework ‘iDeLog’, which
stands for iterative Decomposition in Lognormals. The mathe-
matical notations used are presented in Table 1.

3.1 Stroke Segmentation
The strokes are estimated from the magnitude of the veloc-
ity. Contrary to [27][6], iDeLog does not need to resample
and smooth the input signal. However, for the sake of com-
parison with [27][6], an option to smooth the input signal
has been added to iDeLog.

Once the velocity magnitude is, the strokes are identi-

fied as the velocity peaks between velocity minima. Specif-
N

ically, let the time of the velocity minima be {tminj} ,
j=0

where N is the number of strokes, tpin, = 0, and tyim, =T
the duration of the observed rapid movement, as can be
seen in Figure 2. In this case, the velocity peak which cor-
responds to stroke j is defined as:
vo.(t)={U°(t) tminj_1StStminj'1<j<N (16)

J 0 otherwise,

where v,(t) is the observed velocity signal. In the trajec-
tory, the velocity minima correspond to the salient points
spj,j = 0,...,N, where sp, is the first sample, spy is the last
sample and sp; is the sample tmin * fm, where f,, is the
sampling frequency.
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Fig. 3. Estimation of the target point tp, from the salient points
Sp1, SP2, and sp;

3.2 Kinematic Parameter Extraction

This section approaches each velocity peak as a lognormal
function with parameters to M and g;. As shown in Figure
2, there are many lognormals that reasonably fit a given
peak unless we fix the initial time ¢, ;. beforehand. There-

fore, we first calculate to,- based on a biological argument,
and later, u; and g;.

Estimation of to;

It is well known that the movement action originates in the
cortex, and then passes through the Basal Ganglia, which
decodes the message in order to activate the different pools
of neurons which innervate the muscles to carry out a par-
ticular movement. In a well-learned movement, it makes
sense to assume that the times between the movement ac-
tions are originated in the cortex. Thus, the movement ac-
tion carried out by the motor system should be similar for
each stroke. In our estimation procedure, this transmission
time is represented by tu ;-1 = to;, which is approxi-
mately 0.5 seconds [35]. Specifically, in our case, to; =
tmin,j—1 — 0.5.

Initial Estimation of u; and o}
iDeLog tries to fit the velocity peak v, ;(t) with the lognor-

. 2 . .
mal v; (t, toj, > G5 ) through a nonlinear least-squares min-
imization. The function to minimize is:

tmin,j 2
&, 6]_2 = argminJ |v,- (t; toj,'u]., 0'].2) — (t)| dt (17)
t

2
Hj,05 =tmin,j-1

where
T

v () = v,,(8)/ 7 ;(Bdt (18)

since the area of the lognormal function is equal to 1.

The minimization is performed by means of a Leven-
berg-Marquardt Algorithm (LMA), which is used in many
applications in solving generic curve-fitting problems [36].

3.3 Spatial Parameters Extraction

The spatial parameters of the Sigma-Lognormal model
refer to the virtual target points tp; and their starting and
ending angles, 6;; and 6, , respectively. From these param-
eters, the trajectory is built up by overlapping the arc of the
circumferences linking consecutive virtual target points.

ltp; = htp,(1 + cos(y,/2)/2)

t 1 .‘.".

Arc of circumference between
virtual target points ~a

SPo

Fig. 4. Estimation of values 6,, and 6, ,for the second stroke of the

trajectory

Thus, a virtual target point involves two arcs of circumfer-
ence: one that goes from the target point tp;_; to tp; and
anoher that goes from the target point tp; to tp;,,. The first
one ends at tp;with ending angle 6, ; while the second one
starts at tp; with starting angle 6; ;. The overlap between
the circumference arcs generates a trajectory with a higher
curvature, or salient point, around the virtual target point.
The value of D; is determined by the length of the circum-
ference arcs between virtual target points.

Note that virtual target points are also related to velocity
minima, which generally coincide with salient points. A
virtual target point marks the end of a stroke and the start
of the next one: the overlap of the speed down to the end
of a stroke (tail of the lognormal) with the speed up to the
start of the next stroke (initial rise of the lognormal) gener-
ates a velocity minimum.

Location of the Initial Virtual Target Points tp;

iDeLog estimates the initial virtual target points directly
from the observed trajectory. Each salient point sp; is asso-
ciated with the virtual target points tp;, j=0,..,N. In
iDeLog, tp, = sp, and tpy = spy which are the first and
last points of the trajectory, respectively. The virtual target
point tp; is calculated using sp;_;, sp; and spj.q, j =
1,...,N — 1, which form a triangle. The initial virtual target
point is located on the median of the vertex sp;, which is a
straight line through the vertex sp;and the midpoint
(spj-1 +spj+1)/2 of the opposite side, at a distance Itp;
from the vertex sp; defined as:
ltp; = htpj(l + COS((pj/Z)/Z) (19)

where htp; is the distance between the vertex sp; and the
midpoint of the opposite side, and ¢; is the angle of the
vertex sp;. Thus, when using the cosine function, the
sharper the angle of the vertex spj, the farther tp; is
from sp;. An example of this procedure is shown in Figure
3.

Estimation of Starting BS]. and Ending He]. Angles

The angles of the circumferences that link virtual target
points are defined by their starting 6 ; and ending 6, ; an-

gles Vj = 1, ..., N, where N is the number of strokes. As the
starting and ending angles are constitute a spatial charac-
teristic of the signature, iDeLog estimates these parameters
from the observed spatial trajectory.
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Fig. 7. Left: Observed and reconstructed trajectory, salient points

They are calculated as follows:

1. The middle point mp; of the trajectory of the j™ stroke
between the salient points sp;_; and sp; is calculated.
The term middle point refers to the fact the distance on
the trajectory from mp; to sp;_; and to sp; is equal.

2. A circumference that passes by these three points is
obtained.

3. The angle 6 is computed as the angle of the tangent

to the circumference at sp;_;. Then, the angle Hej is ob-

tained as the angle of the tangent to the circumference
at sp;. This procedure is illustrated in Figure 4.

3.4 Reconstruction of the Trajectory

From the above procedure, we have an initial gross estima-
tion of the parameters of the Sigma—Lognormal model
to ;s 1y, 0] 2, tp;, 05 5 and Ge ,j=1,..,N from the observed

amples {x, (), y,(©)},0 < t<T. The parameters allow us
to calculate the parameter D; and obtain the reconstructed
spatial trajectory T,(t) = {x,(t), »(t)} following equations
(3) and (4). The salient points of the reconstructed spatial
trajectory sprj,j =0,...,N are obtained through the min-
ima of the reconstructed velocity v, (t), which is the deriv-
ative of the reconstructed trajectory.

, virtual target points
and arcs of circumference obtained with the initial parameters. Right: Observed and
reconstructed signature after virtual target point displacement.

Time in seconds

Fig. 8. Observed and reconstructed trajec-
tory and velocity after optimization

Estimation of D;

The value of the lognormal amplitude D; describes the am-
plitude of the movement, and is defined without ambigu-
ity by the position of the virtual target points tp;_4, tp;, 6 ;
and 6, ;. It is calculated as:

Dy =1;(0,-65), € LN (20)
where 7; is the radius of the circumference that goes from
tpj_; to tp;. To calculate r;, we first calculate the center of
the circumference as the intersection of the line that crosses
tpj_1 with slope —1 /tan(BSj) and the line that crosses tp;
with slope —1 /tan(Gej). Then, 7; is the distance from the
center of the circumference to either tp;_; or tp;. This pro-
cedure is illustrated in Figure 5.

It should be pointed out that the Sigma-Lognormal
model overdefines the circumference with five parameters:
D;, tp;_4, tpj, 05 ; and 6, ; whereas a circumference only re-
quires three parameters.

An example of a recovered spatial trajectory with these
initial gross parameters is shown in Figure 6.

3.5 Step 2: Optimization

The basic idea underlying the optimization is to update the
position of the virtual target points tp;,j =1,..,N —1 to
improve both the reconstructed trajectory and velocity
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profile simultaneously. Thus, a sort of visual feedback is

included in the procedure without slowing down the

open-loop motor control.

The improvement is done by means of an iterative Least
Mean Squares (LMS) algorithm applied to each stroke. Be-
cause a movement at a virtual target point modifies the en-
tire trajectory, adapting all of them at the same time would
mean that the iterative algorithm would not converge. For
the sake of convergence, the optimization has to be carried
out stroke by stroke in the same order as a natural human
movement.

The optimization is conducted as follows:

1. Setj=1.

2. Refine the j** virtual target point.

3. Calculate the error or difference FS} between the ob-
served and reconstructed trajectory salient points
Es; = sp; — spr;.

4. Update the virtual target point as tp; = tp; + nFs},
where 0 <7 < 1. The value = 1 represents the fast-
est fitting.

5. With this new virtual target point, reconstruct the en-
tire trajectory T,.(t) = {x,(t),y,(t)} and calculate the
new salient points spr;,j = 1,...,N — 1.

6. Setj=j+1landgoto2ifj<N.

An illustration of this procedure can be found in Figure 7.

As can be seen, there is a significant improvement of the

reconstructed trajectory and velocity. The improvement of

the optimization over a signature is shown in Figure 8.

This optimization can be repeated as many times as nec-

essary. In our experiments, the optimization barely im-

proves the SNR of the reconstructed trajectory and velocity

after two iterations whenn = 1.

The iDeLog is summarized in algorithm 1.

4. EXPERIMENTS

Our evaluation here aimed to measure the ability of
iDeLog to extract the Sigma-Lognormal parameters of con-
tinuous long and complex human movements such as a
handwritten signature. These are supposed to be executed
rapidly, and involve a large number of muscles, which is
consistent with the underlying hypotheses of the Kine-
matic Theory of rapid human movements. The experi-
ments were performed with genuine signatures from exist-
ing databases, as these are well-learned movements writ-
ten naturally. This avoided biased measures due to con-
strained and sluggish movements of imitated signatures

The ability of iDeLog to reconstruct a handwritten sig-
nature will be compared with [27][6] through ScriptStudio.
It is an application used to automatically extract the Sigma-
Lognormal parameters of rapid and complex human
movements. Its robustness and flexibility have been
demonstrated in numerous studies, as stated in Section 1.
The comparison is performed in terms of Signal-to-Noise
Ratio and Equal Error Rate over several publicly available
databases and Automatic Signature Verifiers.

Algorithm 1. iDeLog for Sigma-Lognormal parameter extraction
% Input: On-line samples of an observed signature: (x,, y,)
% Output: Sigma-Lognormal parameters (t(,j,uj,aj, tpj, Os,j, Oc,;)

[x,y.] =8 — connected_trajectory(x,,y,)

v, = Velocity_profile(x,, y,)

N = Number_of_velocity_minima(v,)

tmin; = Time_of_velocity_minima(v,)

% Location of velocity minima on 8-connected trajectory

sp; = SampleLocation_on_SC_trajectory(tm,-nj, Xo) Yor Xer Ve)

% Velocity profiles between velocity minima
Vo, = Velocity_lobe(v,, tmm].)
% First step: initial set of Sigma-Lognormal parameters.
Forj=1:N % For each stroke j

% Lognormal parameters from velocity

to; = Temporal_offset(tmmj)
[, 0] = Levenberg-Marquardt Algorithm(v, )
% Lognormal parameters from trajectory
% Virtual points tp;, angles BSJ., Gej and areas D;

tp; = Triangularization(sp;. x, y.)

[951,, Gej = Trajectory_slope(tpj, sp;. X, yc)

D; = Lognormal_area(tpj, 0 j, 0,,;)

[xr,yr_ Sij] = Reconstruct_trajectory(toj,uj, 0;,tp;j, 05, Oc,j)
end
% Second step: parameter refinement by moving virtual target points
Forj=1:N

ﬁj =Sp; — Spr; % Error at velocity minimum

tp; =tp; + nfs} % Update virtual target point

[GS}., 93].] = Trajectory_slope(tp;, sp;. Xc, )

D; = Lognormal_amplitudes(tpj, s j, 0.,;)

[x7, v, spry] = Reconstruct_trajectory(to , 4, 0}, tP;, 05, be,;)
end

4.1 Databases

Three on-line signature databases were selected. The first
were real on-line genuine signatures from BiosecurelD-
SONOFF [37], consisting of 16 specimens from 132 users.
The signatures were acquired by a WACOM tablet. The
files include the x- and y-coordinates of the trajectory and
the pressure. The sampling frequency is 100 samples per
second.

The second database was the MCYT100 sub-corpus [38].
This comprises the 100 first users of the full MCYT-330 da-
tabase, whose signatures were also captured by a WACOM
tablet. It contains 25 genuine signatures per user. The da-
tabase provides the x- and y-coordinates of the trajectory
and the pressure. The sampling frequency is 100 Hz.

The BiosecureID-SONOFF and MCYT databases were
selected since they also include pen-ups. Thus, we could
test the performance of iDeLog in reconstructing continu-
ous long and complex movements.

The third database was the SUSIGVisual sub-corpus
[39]. This database contains 94 users, with 20 genuine sig-
natures per user. The information provided for each sig-
nature are the x- and y-coordinates of the trajectory and
the pressure. The sampling frequency is 100 Hz. This sub-
corpus was collected with an LCD touch device which
does not capture pen-up movements. As a result, there was
some jitter in the sampling period, leading to noisy lognor-
mals.

The SUSIGVisual database does not contain pen-ups,
but rather, a concatenated sequence of pen-downs. In such
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TABLE 2 TABLE 3
RESULTS OF SCRIPTSTUDIO AND IDELOG MEAN AND STANDARD DEVIATION OF THE NUMBER OF
LOGNORMALS DETECTED BY SCRIPTSTUDIO AND IDELOG
o g - § I~ £ . § iDeLog with/without
Database | Procedure a & % § a ba % § ScriptStudio smoothing
a == S with without
- |p|SeriptStudio| 6.47dB |5.4810.283|16.35dB|4.88| 0.740 > ® ) ® > ®
10secure. 2 =2 2
iDeLog |23.28dB|5.67|0.880|15.22dB|1.19] 0.569 Database -§ E -§ E -§ E
MCYT100 |SCriPtStudiof 6.57dB |5.50/0.298|16.02dB|4.94| 0.698 = BTN E AR R AR R A TR Ry
iDeL 21.33dB|5.30/0.905|15.22dB|1.21| 0.630 losecure : : : : . .
08 MCYT100 |28.24 | 12.18 | 3650 | 19.41 | 44.31 | 25.04
SUSIG  [ScriptStudio|16.39dB|7.02|0.808|17.78dB|4.27| 0.881 SUSIGVisual | 2282 | 896 | 2177 | 1010 | 3961 | 21.24
Visual iDeLog |24.11dB|5.49|1.338|15.19dB|1.25] 0.841

a situation, when we compare iDelLog and ScriptStudio,
the ScriptStudio performance appears to be better [28].

4.2 Quantitative Measures

The reconstruction results are given in the following terms:
(1) Signal-to-Noise Ratio (SNR), and (2) the SNR and the
number of lognormal detected ratio (SNR/NbLog) for both
trajectory and velocity.

The Signal-to-Noise Ratio for trajectory, SNR,, measures
the difference between the observed and reconstructed tra-
jectories. If the observed trajectory is preprocessed, the
measure compares the observed preprocessed trajectory
with the reconstructed one. Thus, we have:

ftT=0(x0p ()% + Yop (t)z)dt>

S (o ()2 + o ()2t
where the numerator x,,(t) = x,(t) —%,(t), Yop(t) =
Y,(t) — ¥-(t) and the denominator x,,.(t) = x,(t) — x.(t),
Yor (&) = ¥, (t) — y-(t). The subindexes o and r denote re-
spectively the observed and the reconstructed signal.

The Signal-to-Noise Ratio for velocity SNR, is the one
used by ScriptStudio. This measure is considered to index
the lognormality of the movements. As these experiments
dealt with genuine signatures which are supposed to be
lognormal, given that they are handwritten fluently, the
higher the SNR obtained, the better the reconstruction. The
SNR, is defined as:

SNR, = 1010g< (21)

SNR, = 1010g< (22)

Jizo V(D) dt )
ST o) = v(0))2dt

The ratio of the SNR,, and the number of lognormals de-
tected SNR,/NbLog has been proposed as a variable that
reflects the writer’s ability to make regular movements
[40][41]. In evaluating a procedure, such a ratio takes into
account the number of lognormals required by the proce-
dure to reach the given SNR,,. Similarly, this is defined by
SNR,/NbLog.

The quantitative measures described in this section were
obtained for each single specimen. The averaged results
and their standard deviation are provided for each experi-
ment. For each result, a balanced two-way ANOVA analy-
sis was run to check for the significance of the observed
differences, based on p < 0.05 values.

4.3 Experiment 1: ScriptStudio and iDeLog

For a fair comparison between ScriptStudio and iDeLog,
the observed signal used as input to both procedures

should be the same. Consequently, the input to iDeLog
and ScriptStudio are interpolated and smoothed. Further-
more, to measure the ability to decompose continuous long
complex movements, both iDeLog and ScripStudio were
fed with the whole signature, including pen-ups.

The results are shown in Table 2. It is worth pointing
out that the SNRs in Table 2 are calculated in the same way
as ScriptStudio, i.e., as the ratio between the reconstructed
signal and the preprocessed observed one. The ANOVA
analysis comparing ScriptStudio and iDeLog resulted in p-
values lower that 0.05 in all cases shown in Table 2.

As can be seen, the performance of ScriptStudio in fitting
the velocity profile is significantly better than that of
iDeLog, but the iDeLog does a significantly better job ad-
justing the trajectory. Furthermore, the standard deviation
of SNR, is meaningfully lower in iDeLog than ScriptStu-
dio, which means iDeLog is a more stable procedure.

The slight decrease in SNR,, of iDeLog is attributed to the
harder constraint of fitting the trajectory and velocity con-
currently. Conversely, this condition is believed to keep
the standard deviation lower.

It is worth mentioning that, as expected, the perfor-
mance of ScriptStudio on the SUSIGVisual database was
significantly better than with the MCYT100 or Biose-
cureID-SONOFF. This was due to the fact that the
SUSIGVisual database does not contain pen-ups. This
helps ScriptStudio to segment the signature in shorter
pieces, therefore reducing the cumulative error in the ve-
locity.

The question which arises is, since the trajectory is the
integral of the velocity, how could a similar SNR,, therefore
result in such a different SNR,? The answer seems to be re-
lated to the distribution of the error in the reconstructed
velocity.

Indeed, when adjusting the virtual target points in
iDeLog, an error in the reconstruction of the velocity pro-
duces a new velocity deviation to compensate for the drift
of the trajectory and to keep both trajectory and velocity
errors as low as possible. It can therefore be said that the
error is distributed along the whole signature. In the case
of ScriptStudio, an error in the velocity is not compensated
since the trajectory reconstruction is not checked. Thus, a
missing or an extra lognormal or a deficient fit to a lognor-
mal results in an unrectified trajectory drift.

Regarding the number of lognormals detected by
ScriptStudio and iDeLog, Table 3 reports the results. Here

Page 8 of 12
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TABLE 4 TABLE 5
RESULTS OF IDELOG WITH AND WITHOUT SMOOTHING AREA BETWEEN THE DET CURVES OF THE ORIGINAL AND RE-
= g CONSTRUCTED SIGNATURES DATABASES.
Q
o o 3 N - 3 Reconstructed with
. > € 2 [~ = = o)
Database [Smoothing| = Z = Z| X o iDeLo iDelo
3 S| = 3 & N = g g
% E § with without
HrosecarelD Yos 3323481 5.67 10.830115.22dB 1.19 10,569 Patabase ScriptStudio|smoothing|smoothing
No  |22.63dB|5.16 [0.811|16.20dB| 1.91 |0.579 | BiosecurelD 0.0138 0.0120 | 0.0111
MCYT100 Yes  [21.33dB|5.30 [0.905[15.22dB| 1.21 [0.630 5| MCYTI00 0.1230 0.0086 0.0083
No 20.81dB| 4.65 |0.748|15.31dB| 1.87 |0.537 SUSIGVisual 0.0185 0.0077 0.0085
SUSIG Yes 24.11dB| 5.49 |1.338|15.19dB| 1.25 |0.841 BiosecurelD 0.0333 0.0155 0.0158
Visual No 21.63dB| 6.07 |0.709|10.25dB| 3.68 |0.358 % MCYT100 0.0338 0.0095 0.0105
SUSIGVisual 0.0282 0.0236 0.0359

again, the statistical analysis confirms that all the results
were significantly different. As can be seen, the number of
lognormals detected by ScriptStudio is more stable. This is
due to the stop criteria in the stroke extraction procedure.
On the one hand, ScriptStudio stops the stroke extraction
when the current reconstruction is considered good
enough or the current number of strokes is larger than a
maximum value, or when there is no set of characteristic
points left. On the other hand, iDeLog extracts as many
strokes as there are minima found in the velocity profile.
Obviously, if there is no smoothing, the number of strokes
is larger, as can be seen in Table 3. Thus, the smoothing
reduces the number of lognormals in this case.

4.4 Experiment 2: Smoothing vs. Observed Signal

For a deeper examination of the effect of smoothing in
iDeLog, we analyzed the SNR results in these two condi-
tions. ScriptStudio was not part of this analysis since the
SNR, of decomposing an observed signal without smooth-
ing is not available as a feature in the licensed version of
ScripStudio. The results obtained with and without
smoothing are summarized in Table 4. Note that in the case
of no smoothing, the SNRs compare the reconstructed sig-
nal with the observed one. Here, the ANOVA analysis de-
tected only significant differences in the case of SNR, for
the SUSIGVisual database.

As can be seen in Table 4, there is no clear tendency in
favor of using or not using smoothing, except in the case of
SNR, because of the noisy velocity profiles present, possi-
bly caused by a jitter in the sampling frequency.

4.5 Experiment 3: Automatic Signature Verification
with the Reconstructed Databases

The purpose of this experiment was not to propose iDeLog
as an Automatic Signature Verifier (ASV). Instead, we
were keen on identifying the kind of reconstructed signa-
tures that has more similarities to real signatures perfor-
mance-wise, in a signature verification test scenario. On-
line signature verification requires a precise reconstruction
not only in the velocity domain, but also in the trajectory
domain. Here, it is expected that iDeLog offers many ad-
vantages.

Automatic Signature Verification

An automatic signature verifier compares a questioned
signature with a set of undoubted signatures from a signer.

The result of such a comparison is usually quantified as a
score. If the score is greater than a given threshold, the
questioned signature is accepted as genuine, otherwise it
is rejected.

The performance of an automatic signature verifier is
measured in terms of False Acceptance Rate (FAR) and
False Rejection Rate (FRR). The Equal Error Rate (EER) is
the verification error when FAR is equal to FRR. The De-
tection Error Tradeoff (DET) curve plots the FAR against
the FRR.

Two different on-line Automatic Signature Verifiers
(ASVs) were chosen to cover a wide range of signature
properties in the test:

1. A Dynamic Time Warping (DTW)-based verifier that
compares the dynamics of the questioned and refer-
ence signature using a DTW algorithm with Euclidean
Distance [42].

2. A Manhattan distance (MD)-based verifier that com-
pares histograms of absolute and relative frequencies
of the dynamics. The distance between histograms of
reference and questioned signatures is calculated by
means of the Manhattan distance [43].

These experiments were performed using the trajectory,
velocity, acceleration and pressure as input parameters. In
the case of the original databases, the velocity and acceler-
ation were computed as the first and second derivatives of
the trajectory; for the reconstructed databases, the trajec-
tory was obtained as the integral of the velocity and the
acceleration as the first derivative of the velocity. The pres-
sures in the reconstructed database were 1 for pen-downs
and 0 for pen-ups.

All the verifiers were trained with the 5 first signatures
of each signer, while the remaining genuine signatures
were used for testing the false rejection rate. In all cases,
the false acceptance rate was obtained with the genuine
test samples from all the remaining users, considered as
potential random forgeries.

EER and DET comparison

This test consists in decomposing the entire signature da-
tabase as a sum of lognormals and reconstructing them
from the Sigma-Lognormal parameters. The Automatic
Signature Verifiers were run with the original and recon-
structed databases. The more the results were similar, the
more accurate the reconstruction was. Specifically, we
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Fig. 9. DET curves of the DTW automatic signature verifier with the original databases and the reconstructed databases with ScripStudio,
iDeLog with smoothing, and with iDeLog without smoothing. The databases are BiosecurelD, MCYT100 and SUSIGVisual.
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Fig. 10. DET curves of the Manhattan distance automatic signature verifier with the original and the reconstructed databases with Scrip-
Studio, iDeLog with smoothing, and with iDeLog without smoothing. The databases are BiosecurelD, MCYT100 and SUSIGVisual.

compared the original database with the databases recon-
structed by ScriptStudio and iDeLog with smoothing, and
by iDeLog without smoothing.

The DET curves, along with the EERs, obtained with the
different databases are shown in Figures 9 and 10 for DTW
and MD, respectively. To compare the DET curves, Table 5
shows the area between the DET curves of the original da-
tabase and those of the reconstructed databases. The lower
this area, the better the reconstruction.

As can be seen, the iDeLog reconstructed database dis-
plays similar DET curves and EERs as the original one in
the three databases using the DTW verifier. However, in
accordance with our results above, there is no clear indica-
tion for using or not using smoothing.

In the case of the MD verifier, we had different findings.
The EERs of the iDeLog reconstructed databases were sim-
ilar, but lower than the EERs obtained with the original da-
tabase. Furthermore, the EERs obtained with smoothing
outperformed the EERs without smoothing. This could be
due to the fact the MD verifier uses features based on his-
tograms of dynamic characteristics, such as velocity and
acceleration. As a result, it seems that smoothed velocity
profiles result in more discriminative histograms.

A second test was conducted in both verifiers using only

the velocity values as input parameters. This is because
ScriptStudio focuses only on velocity. The EERs were
higher in nearly all the cases since the verifiers were fed
with less information in these cases. The same ranking ten-
dency with regard to the DET curves was observed in the
results.

5. CONCLUSIONS

This paper presented iDelog, a novel framework for cal-
culating the parameters of the Sigma-Lognormal model.
The framework is designed to handle continuous, long and
complex movements, where the trajectory and velocity re-
constructions are required simultaneously.

iDeLog depends on motor equivalence theory and the
hypothesis of a visual feedback compatible with open-loop
motor control. Thus, it extracts the spatial and kinematic
parameters of the Sigma-Lognormal model separately, and
then performs a joint parameter optimization, moving the
virtual target points.

The experiments conducted show that statistically,
iDeLog is able to reconstruct the trajectory significantly
better than ScriptStudio when movement is continuous,
long and complex, as is the case of handwritten signatures.
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However, iDeLog provides poorer results than ScripStu-
dio in reconstructing velocity, which is probably due to the
trade-off between trajectory and velocity in iDeLog.

iDeLog also provides the possibility of avoiding the ini-
tial preprocessing, which thus allows it to retain the statis-
tical performance, except in the case of the velocity, where
the input is noisy. This could be an advantage for some
verifiers, as seen in the MD results.

The new procedure is expected to represent a further
step forward for applications based on the Sigma-Lognor-
mal model and on the Kinematic Theory, in which both the
velocity and trajectory reconstructions are important.
Moreover, iDeLog can be especially useful in those cases
where there is some information in high frequency compo-
nents, and therefore, where it would be unnecessary to
complete a smoothing preprocessing stage.
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