Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/77338
Título: Acoustic identification of insects based on cepstral data fusion and hidden Markov models
Autores/as: Travieso González, Carlos Manuel 
Noda, Juan J.
Sánchez Rodríguez, David Cruz 
Clasificación UNESCO: 240601 Bioacústica
Palabras clave: Acoustic Monitoring
Bioacoustic Taxonomy Identification
Biological Acoustic Analysis
Hidden Markov Models
Insect Sound Classification
Fecha de publicación: 2020
Editor/a: Elsevier
Resumen: © 2021 Elsevier Inc.This study presents an intelligent system for automatic acoustic classification and verification of insect sounds based on hidden Markov models. We propose a new approach to acquire knowledge of this biodiversity through a digital signal-processing technique designed specifically for the identification and verification of acoustic sounds of insects using mel frequency cepstral coefficients and linear frequency cepstral coefficients. The two types of coefficients are evaluated individually, as shown in previous work, and a data fusion is proposed, showing an outstanding increase in identification and classification accuracy, reaching 98.38% on the level of specific species, out of 250 species reported in the singing insects of North America collection and 26 species of katydids from Costa Rica.
URI: http://hdl.handle.net/10553/77338
ISBN: 9780128151600
DOI: 10.1016/B978-0-12-815160-0.00018-9
Fuente: Neuroendocrine Regulation of Animal Vocalization: Mechanisms and Anthropogenic Factors in Animal Communication[EISSN ], p. 31-37, (Enero 2020)
Colección:Capítulo de libro
Vista completa

Visitas

165
actualizado el 13-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.