Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/77338
Campo DC Valoridioma
dc.contributor.authorTravieso González, Carlos Manuel-
dc.contributor.authorNoda, Juan J.-
dc.contributor.authorSánchez Rodríguez, David Cruz-
dc.date.accessioned2021-01-26T09:53:13Z-
dc.date.available2021-01-26T09:53:13Z-
dc.date.issued2020-
dc.identifier.isbn9780128151600-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/77338-
dc.description.abstract© 2021 Elsevier Inc.This study presents an intelligent system for automatic acoustic classification and verification of insect sounds based on hidden Markov models. We propose a new approach to acquire knowledge of this biodiversity through a digital signal-processing technique designed specifically for the identification and verification of acoustic sounds of insects using mel frequency cepstral coefficients and linear frequency cepstral coefficients. The two types of coefficients are evaluated individually, as shown in previous work, and a data fusion is proposed, showing an outstanding increase in identification and classification accuracy, reaching 98.38% on the level of specific species, out of 250 species reported in the singing insects of North America collection and 26 species of katydids from Costa Rica.-
dc.languageeng-
dc.publisherElsevier-
dc.sourceNeuroendocrine Regulation of Animal Vocalization: Mechanisms and Anthropogenic Factors in Animal Communication[EISSN ], p. 31-37, (Enero 2020)-
dc.subject240601 Bioacústica-
dc.subject.otherAcoustic Monitoring-
dc.subject.otherBioacoustic Taxonomy Identification-
dc.subject.otherBiological Acoustic Analysis-
dc.subject.otherHidden Markov Models-
dc.subject.otherInsect Sound Classification-
dc.titleAcoustic identification of insects based on cepstral data fusion and hidden Markov models-
dc.typeinfo:eu-repo/semantics/bookPart-
dc.typeBookPart-
dc.identifier.doi10.1016/B978-0-12-815160-0.00018-9-
dc.identifier.scopus85126422121-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid6602376272-
dc.contributor.authorscopusid57187964500-
dc.contributor.authorscopusid56690271600-
dc.description.lastpage37-
dc.description.firstpage31-
dc.investigacionIngeniería y Arquitectura-
dc.type2Capítulo de libro-
dc.utils.revision-
dc.date.coverdate12/2020-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Redes y Servicios Telemáticos-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.orcid0000-0003-2700-1591-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.author.fullNameSánchez Rodríguez, David De La Cruz-
Colección:Capítulo de libro
Vista resumida

Visitas

165
actualizado el 13-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.