Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/77330
Título: Analysis of Risk Factors in Dementia Through Machine Learning
Autores/as: Balea Fernández, Francisco Javier 
Martínez Vega, Beatriz 
Ortega Sarmiento, Samuel 
Fabelo Gómez, Himar Antonio 
León Martín, Sonia Raquel 
Marrero Callicó, Gustavo Iván 
Bilbao Sieyro, Cristina 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Alzheimer’s disease
machine learning
neurocognitive disorders
risk factors
Fecha de publicación: 2021
Proyectos: Identificación Hiperespectral de Tumores Cerebrales (Ithaca) 
Plataforma H2/Sw Distribuida Para El Procesamiento Inteligente de Información Sensorial Heterogenea en Aplicaciones de Supervisión de Grandes Espacios Naturales 
Publicación seriada: Journal of Alzheimer's Disease 
Resumen: Background:Sociodemographic data indicate the progressive increase in life expectancy and the prevalence of Alzheimer’s disease (AD). AD is raised as one of the greatest public health problems. Its etiology is twofold: on the one hand, non-modifiable factors and on the other, modifiable. Objective:This study aims to develop a processing framework based on machine learning (ML) and optimization algorithms to study sociodemographic, clinical, and analytical variables, selecting the best combination among them for an accurate discrimination between controls and subjects with major neurocognitive disorder (MNCD). Methods:This research is based on an observational-analytical design. Two research groups were established: MNCD group (n = 46) and control group (n = 38). ML and optimization algorithms were employed to automatically diagnose MNCD. Results:Twelve out of 37 variables were identified in the validation set as the most relevant for MNCD diagnosis. Sensitivity of 100%and specificity of 71%were achieved using a Random Forest classifier. Conclusion:ML is a potential tool for automatic prediction of MNCD which can be applied to relatively small preclinical and clinical data sets. These results can be interpreted to support the influence of the environment on the development of AD.
URI: http://hdl.handle.net/10553/77330
ISSN: 1387-2877
DOI: 10.3233/JAD-200955
Fuente: Journal of Alzheimer's Disease[ISSN 1387-2877],v. 79 (2), p. 845-861
Colección:Artículos
Unknown (1,66 MB)
Vista completa

Citas SCOPUSTM   

6
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 17-nov-2024

Visitas

241
actualizado el 24-ago-2024

Descargas

551
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.